Skip to main content
Log in

Monitoring crayfish using a mark-recapture method: potentials, recommendations, and limitations

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Crayfish are regarded as useful indicators of environmental quality and freshwater biodiversity. However, reliable methods for monitoring their populations are needed so that this potential can be fully utilised. We report and discuss methodological aspects of the white-clawed crayfish (Austropotamobius pallipes complex) survey conducted in Piedmont, Italy, with the use of mark-recapture. The results suggest that the method can serve as a convenient tool for estimating the size of crayfish populations and inferring their temporal trends. The two populations investigated appeared closed except for wintertime and July. Consequently, the Robust Design, which is regarded as the most reliable mark-recapture approach, can be easily applied. The minimum effective sampling plan for monitoring purposes should comprise one primary period per year, conducted in the summer–autumn season, and consisting of three capture sessions. If gaining insight into the ecology of the investigated species is the prime objective and sufficient resources are available, the optimal plan should include two primary periods (in spring and the summer–autumn season) of five capture sessions each. Capture sessions need to be separated by roughly 2-week intervals in order to avoid the strong, but short-term, negative effect of capturing crayfish on their recapture chances. As the model without heterogeneity in capture probabilities ensures better estimate precision we recommend that data collected for both sexes are analysed separately. Taking into consideration higher male catchabilities and sex ratio being invariably 1:1, it also seems beneficial to estimate only male numbers and double them to achieve total population sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahamsson S (1983) Trappability, locomotion, and diel pattern of activity of the crayfish Astacus astacus and Pacifastacus leniusculus Dana. Freshw Crayfish 5:239–253

    Google Scholar 

  • Acosta CA, Perry SA (2000) Effective sampling area: a quantitative method for sampling crayfish population in freshwater marshes. Crustaceana 73:425–431. doi:10.1163/156854000504516

    Article  Google Scholar 

  • Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Arnason AN, Mills KH (1981) Bias and loss of precision due to tag loss in Jolly-Seber estimates for mark-recapture experiments. Can J Fish Aquat Sci 38:1077–1095

    Article  Google Scholar 

  • Arnason AN, Schwarz CJ (1999) Using POPAN-5 to analyse banding data. Bird Study 46(Suppl):157–168

    Google Scholar 

  • Baillie SR (1995) Uses of ringing data for the conservation and management of bird populations: a ringing scheme perspective. J Appl Stat 22:967–987. doi:10.1080/02664769524748

    Article  Google Scholar 

  • Baillie J, Groombridge B (eds) (1996) 1996 IUCN red list of threatened animals. IUCN, Gland

    Google Scholar 

  • Bubb DH, Lucas MC, Timothy J, Thom TJ (2002) Winter movements and activity of signal crayfish Pacifastacus leniusculus in an upland river, determined by radio telemetry. Hydrobiologia 483:111–119. doi:10.1023/A:1021363109155

    Article  Google Scholar 

  • Bubb DH, Thom TJ, Lucas MC (2006) Movement patterns of the invasive signal crayfish determined by PIT telemetry. Can J Zool 84:1202–1209. doi:10.1139/Z06-100

    Article  Google Scholar 

  • Byron CJ, Wilson A (2001) Rusty crayfish (Orconectes rusticus) movement within and between habitats in Trout Lake, Vilas County, Wisconsin. J North Am Benthol Soc 20:606–614. doi:10.2307/1468091

    Article  Google Scholar 

  • Chao A (1989) Estimating population size for sparse data in capture-recapture experiments. Biometrics 45:427–438. doi:10.2307/2531487

    Article  Google Scholar 

  • Chao A, Lee SM, Jeng SL (1992) Estimation of population size for capture-recapture data when capture probabilities vary by time and individual animal. Biometrics 48:201–216. doi:10.2307/2532750

    Article  PubMed  CAS  Google Scholar 

  • Crawford L, Yeomans WE, Adams CE (2006) The impact of introduced signal crayfish Pacifastacus leniusculus on stream invertebrate communities. Aquat Conserv 16:611–621. doi:10.1002/aqc.761

    Article  Google Scholar 

  • DiStefano RJ, Gale CM, Wagner BA, Zweifel RD (2003) A sampling method to assess lotic crayfish communities. J Crust Biol 23:678–690. doi:10.1651/C-2364

    Article  Google Scholar 

  • Dorn NJ, Mittelbach GG (1999) More than predator and prey: a review of interactions between fish and crayfish. Vie Milieu 49:229–237

    Google Scholar 

  • Dorn NJ, Urgelles R, Trexler JC (2005) Evaluating active and passive sampling methods to quantify crayfish density in a freshwater wetland. J North Am Benthol Soc 24:346–356. doi:10.1899/04-037.1

    Article  Google Scholar 

  • Flowerdew JR, Shore RF, Poulton SMC, Sparks TH (2004) Live trapping to monitor small mammals in Britain. Mammal Rev 34:31–50. doi:10.1046/j.0305-1838.2003.00025.x

    Article  Google Scholar 

  • Fratini S, Zaccara S, Barbaresi S, Grandjean F, Souty-Grosset C, Crosa G et al (2005) Phylogeography of the threatened crayfish (genus Austropotamobius) in Italy: implications for its taxonomy and conservation. Heredity 94:108–118. doi:10.1038/sj.hdy.6800891

    Article  PubMed  CAS  Google Scholar 

  • Frisch AJ, Hobbs JPA (2006) Long term retention of internal elastomer tags in a wild population of painted crayfish (Panulirus versicolor [Latreille]) on the Great Barrier Reef. J Exp Mar Biol Ecol 339:104–110. doi:10.1016/j.jembe.2006.07.016

    Article  Google Scholar 

  • Gherardi F (2006) Crayfish invading Europe: the case study of Procambarus clarkii. Mar Freshw Behav Physiol 39:175–191. doi:10.1080/10236240600869702

    Article  Google Scholar 

  • Gherardi F, Holdich D (eds) (1999) Crayfish in Europe as alien species: how to make the best of a bad situation? Crustacean Issues, vol 11. Balkema, Rotterdam

    Google Scholar 

  • Gherardi F, Souty-Grosset C (eds) (2006) European crayfish as heritage species-linking research and management strategies to conservation and socio-economic development, CRAYNET, vol 4. Bull Fr Pêche Piscic 380–381:1–566

  • Gherardi F, Barbaresi S, Salvi G (2000) Spatial and temporal patterns in the movement of Procambarus clarkii, an invasive crayfish. Aquat Sci 62:179–193

    Google Scholar 

  • Gledhill T, Sutcliffe DW, Williams WD (1993) British freshwater Crustacea Malacostraca, 2nd edn. Freshwater Biological Association Scientific Publications 52. Freshwater Biological Association, Ambleside

    Google Scholar 

  • Grandjean F, Frelon-Raimond M, Souty-Grosset C (2002) Compilation of molecular data for the phylogeny of the genus Austropotamobius: one species or several? Bull Fr Peche Piscic 367:671–680

    Article  Google Scholar 

  • Guan RZ (1997) An improved method for marking crayfish. Crustaceana 70:641–652. doi:10.1163/156854097X00104

    Article  Google Scholar 

  • Guan RZ, Wiles PR (1996) Growth, density and biomass of crayfish, Pacifastacus leniusculus, in a British lowland river. Aquat Living Resour 9:265–272. doi:10.1051/alr:1996030

    Article  Google Scholar 

  • Hicks BJ (2003) Distribution and abundance of fish and crayfish in a Waikato stream in relation to basin area. NZ J Zool 30:149–160

    Google Scholar 

  • Hockley NJ, Jones JPG, Andriahajaina FB, Manica A, Ranambitsoa EH, Randriamboahary JA (2005) When should communities and conservationists monitor exploited resources? Biodivers Conserv 14:2795–2806. doi:10.1007/s10531-005-8416-8

    Article  Google Scholar 

  • Holdich DM (2003) Ecology of the white-clawed crayfish Austropotamobius pallipes. Conserving natura 2000 rivers, ecology series no. 1. English Nature, Peterborough

    Google Scholar 

  • Holdich DM, Lowery RS (eds) (1988) Freshwater crayfish—biology, management and exploitation. Croom Helm, London

    Google Scholar 

  • Holdich DM, Reeve ID (1991) The distribution of freshwater crayfish in the British Isles with particular reference to crayfish plague, alien introductions and water quality. Aquat Conserv 1:139–158. doi:10.1002/aqc.3270010204

    Article  Google Scholar 

  • Hurvich CM, Tsai C (1989) Regression and time series model selection in small samples. Biometrika 76:297–307. doi:10.1093/biomet/76.2.297

    Article  Google Scholar 

  • Jay D, Holdich DM (1981) The distribution of the crayfish, Austropotamobius pallipes, in British waters. Freshw Biol 11:121–129. doi:10.1111/j.1365-2427.1981.tb01248.x

    Article  Google Scholar 

  • Jones JPG, Andriahajaina FB, Hockley NJ, Balmford A, Ravoahangimalala OR (2005) A multidisciplinary approach to assessing the sustainability of freshwater crayfish harvesting in Madagascar. Conserv Biol 19:1863–1871. doi:10.1111/j.1523-1739.2005.00267.x

    Article  Google Scholar 

  • Jones JPG, Coulson T (2006) Population regulation and demography in a harvested freshwater crayfish from Madagascar. Oikos 112:602–611. doi:10.1111/j.0030-1299.2006.14301.x

    Article  Google Scholar 

  • Julliard R, Jiguet F, Couvet D (2004) Evidence for the impact of global warming on the long-term population dynamics of common birds. Proc Biol Sci 271:490–492. doi:10.1098/rsbl.2004.0229

    Article  Google Scholar 

  • Kendall WL (1999) Robustness of closed capture-recapture methods to violations of the closure assumption. Ecology 80:2517–2525

    Google Scholar 

  • Lancia RA, Nichols JD, Pollock KH (1994) Estimating the number of animals in wildlife populations. In: Bookhout TA (ed) Research and management techniques for wildlife and habitats, 5th edn. The Wildlife Society, Bethesda, pp 215–253

    Google Scholar 

  • Lodge DM, Kershner MW, Aloi JE, Covich AP (1994) Effects of an omnivorous crayfish (Orconectes rusticus) on a freshwater littoral food web. Ecology 75:1265–1281. doi:10.2307/1937452

    Article  Google Scholar 

  • Lodge DM, Taylor CA, Holdich DM, Skurdal J (2000) Nonindigenous crayfishes threaten North American freshwater biodiversity: lessons from Europe. Fisheries 25:7–20 doi:10.1577/1548-8446(2000)025<0007:NCTNAF>2.0.CO;2

    Article  Google Scholar 

  • Lowery RS (1988) Growth, moulting and reproduction. In: Holdich DM, Lowery RS (eds) Freshwater crayfish: biology, management and exploitation. Croom Helm, London, pp 83–113

  • Maguire I, Erben R, Klobucar GIV, Lajtner J (2002) Year cycle of Austropotamobius torrentium (Schrank) in streams on Medvednica Mountain (Croatia). Bull Fr Peche Piscic 367:943–957

    Article  Google Scholar 

  • Maguire I, Hudina S, Erben R (2004) Estimation of noble crayfish (Astacus astacus L.) population size in the Velika Paklenica Stream (Croatia). Bull Fr Peche Piscic 372:353–366. doi:10.1051/kmae:2004009

    Article  Google Scholar 

  • Marunouchi J, Kusano T, Ueda H (2002) Fluctuation in abundance and age structure of a breeding population of the Japanese brown frog, Rana japonica Gunther (Amphibia, Anura). Zool Sci 19:343–350. doi:10.2108/zsj.19.343

    Article  PubMed  Google Scholar 

  • Menkens GE Jr, Anderson SH (1988) Estimation of small-mammal population size. Ecology 69:1952–1959. doi:10.2307/1941172

    Article  Google Scholar 

  • Moore JA, Hoare JM, Daugherty CH, Nelson NJ (2007) Waiting reveals waning weight: monitoring over 54 years shows a decline in body condition of a long-lived reptile (tuatara, Sphenodon punctatus). Biol Conserv 135:181–188. doi:10.1016/j.biocon.2006.10.029

    Article  Google Scholar 

  • Nowicki P, Witek M, Skórka P, Settele J, Woyciechowski M (2005) Population ecology of endangered butterflies Maculinea teleius and M. nausithous and its conservation implications. Popul Ecol 47:193–202. doi:10.1007/s10144-005-0222-3

    Article  Google Scholar 

  • Nowicki P, Settele J, Henry P-Y, Woyciechowski M (2008) Butterfly monitoring methods: the ideal and the real world. Isr J Ecol Evol 54:69–88

    Article  Google Scholar 

  • Nyström P, Brönmark C, Graneli W (1996) Patterns in benthic food webs: a role for omnivorous crayfish? Freshw Biol 36:631–646. doi:10.1046/j.1365-2427.1996.d01-528.x

    Article  Google Scholar 

  • Otis DL, Burnham KP, White DC, Anderson DR (1978) Statistical inference from capture data on closed animal populations. Wildl Monogr 62:1–135

    Google Scholar 

  • Parkyn SM, Collier KJ, Hicks BJ (2002) Growth and population dynamics of crayfish Paranephrops planifrons in streams within native forest and pastoral land uses. NZ J Mar Freshw 36:847–861

    Google Scholar 

  • Peay S (2003) Monitoring the White-clawed crayfish Austropotamobius p. pallipes. Conserving natura 2000 rivers, monitoring series no. 1. English Nature, Peterborough

    Google Scholar 

  • Pintor LM, Soluk DA (2006) Evaluating the non-consumptive, positive effects of a predator in the persistence of an endangered species. Biol Conserv 130:584–591. doi:10.1016/j.biocon.2006.01.021

    Article  Google Scholar 

  • Pollock KH (1982) A capture-recapture design robust to unequal probabilities of capture. J Wildl Manage 46:757–760. doi:10.2307/3808569

    Article  Google Scholar 

  • Pollock KH, Nichols JD, Brownie C, Hines JE (1990) Statistical inference for capture recapture experiments. Wildl Monogr 107:1–97

    Google Scholar 

  • Pollock KH, Yoshizaki J, Fabrizio MC, Schram ST (2007) Factors affecting survival rates of a recovering lake trout population estimated by mark-recapture in Lake Superior, 1969–1996. Trans Am Fish Soc 136:185–194. doi:10.1577/T05-317.1

    Article  Google Scholar 

  • Rabeni CF, Collier KJ, Parkyn SM, Hicks BJ (1997) Evaluating methods of sampling stream crayfish. NZ J Mar Freshw 31:693–700

    Article  Google Scholar 

  • Rexstad EA, Burnham KP (1991) User’s guide for interactive program CAPTURE. Abundance estimation of closed animal populations. Colorado State University, Fort Collins

    Google Scholar 

  • Reynolds JD (1998) Conservation management of the white-clawed crayfish, Austropotamobius pallipes. Part 1. Irish Wildlife Manuals 1, Dublin

  • Reynolds J, Souty-Grosset C (eds) (2003) The endangered native crayfish Austropotamobius pallipes, bioindicator and heritage species, CRAYNET, vol 1. Bull Fr Pêche Piscic 370–371:1–230

  • Reynolds JD, Gouin N, Pain S, Grandjean F, Demers A, Souty-Grosset C (2001) Irish crayfish populations: ecological survey and preliminary genetic findings. Freshw Crayfish 13:584–594

    Google Scholar 

  • Robinson CA, Thom TJ, Lucas MC (2000) Ranging behaviour of a large freshwater invertebrate, the white-clawed crayfish Austropotamobius pallipes. Freshw Biol 44:509–521. doi:10.1046/j.1365-2427.2000.00603.x

    Article  Google Scholar 

  • Rodríguez CF, Bécares E, Fernández-Aláez M, Fernández-Aláez C (2005) Loss of diversity and degradation of wetlands as a result of introducing exotic crayfish. Biol Invasions 7:75–85. doi:10.1007/s10530-004-9636-7

    Article  Google Scholar 

  • Rogowski DL, Stockwell CA (2006) Assessment of potential impacts of exotic species on populations of a threatened species, White Sands pupfish, Cyprinodon tularosa. Biol Invasions 8:79–87. doi:10.1007/s10530-005-0238-9

    Article  Google Scholar 

  • Rosenthal SK, Stevens SS, Lodge DM (2006) Whole-lake effects of invasive crayfish (Orconectes spp.) and the potential for restoration. Can J Fish Aquat Sci 63:1276–1285. doi:10.1139/F06-037

    Article  Google Scholar 

  • Santucci F, Iaconelli M, Andreani P, Cianchi R, Nascetti G, Bullini L (1997) Allozyme diversity of European freshwater crayfish of the genus Austropotamobius. Bull Fr Pêche Piscic 347:663–676

    Article  Google Scholar 

  • Scalici M, Gibertini G (2005) Can Austropotamobius italicus meridionalis be used as a monitoring instrument in Central Italy? Preliminary observations. Bull Fr Peche Piscic 376–377:613–625

    Article  Google Scholar 

  • Schwarz CJ, Arnason AN (1996) A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52:860–873. doi:10.2307/2533048

    Article  Google Scholar 

  • Schwarz CJ, Seber GAF (1999) Estimating animal abundance. Stat Sci 14:427–456. Review III. doi:10.1214/ss/1009212521

    Article  Google Scholar 

  • Skalski JR, Robson DS (1992) Techniques for wildlife investigations. Academic Press, San Diego

    Google Scholar 

  • Skurdal J, Qvenild T, Taugbøl T, Fjeld E (1990) A 6-year study of Thelohania contejeani parasitism of the noble crayfish, Astacus astacus L, in lake Steinsfjorden, SE Norway. J Fish Dis 13:411–415. doi:10.1111/j.1365-2761.1990.tb00800.x

    Article  Google Scholar 

  • Souty-Grosset C, Holdich DM, Noel PY, Reynolds JD, Haffner P (eds) (2006) Atlas of crayfish in Europe. Muséum National d’Histoire Naturelle, Paris

    Google Scholar 

  • Taugbøl T, Skurdal J (1999) The future of native crayfish in Europe—how to make the best of a bad situation? Crustac Issues 11:271–279

    Google Scholar 

  • Tirelli T, Mussat Sartor R, Bona F, De Biaggi E, Zocco D, Badino G et al Census of Austropotamobius genus in four Districts of Piedmont (Western Italy). Bol Mus Reg Sci Nat Torino (in press)

  • Usio N, Townsend CR (2004) Roles of crayfish: consequences of predation and bioturbation for stream invertebrates. Ecology 85:807–822. doi:10.1890/02-0618

    Article  Google Scholar 

  • van Helddingen PJ, Willemse I, Speight MCD (eds) (1996) Background information on the invertebrates of the habitats directive and the bern convention. Part 1-Crustacea, Coleoptera and Lepidoptera. Nature and environment no. 79. Council of Europe Publishing, Strasbourg

    Google Scholar 

  • Webb M, Richardson A (2004) A radio telemetry study of movement in the giant Tasmanian freshwater crayfish, Astacopsis gouldi. Freshw Crayfish 14:197–204

    Google Scholar 

  • Westman K, Savolainen R (2002) Growth of the signal crayfish, Pacifastacus leniusculus, in a small lake in Finland. Boreal Environ Res 7:53–61

    Google Scholar 

  • Westman K, Savolainen R, Julkunen M (2002) Replacement of the native crayfish Astacus astacus by the introduced species Pacifastacus leniusculus in a small, enclosed Finnish lake: a 30-year study. Ecography 25:53–73. doi:10.1034/j.1600-0587.2002.250107.x

    Article  Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46:120–138

    Google Scholar 

  • Whitledge GW, Rabeni CF (1997) Energy sources and ecological role of crayfishes in an Ozark stream: insights from stable isotopes and gut analysis. Can J Fish Aquat Sci 54:2555–2563. doi:10.1139/cjfas-54-11-2555

    Article  Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, San Diego

    Google Scholar 

  • Willis TV, Magnuson JJ (2006) Response of fish communities in five north temperate lakes to exotic species and climate. Limnol Oceanogr 51:2808–2820

    Google Scholar 

  • Wilson KA, Magnuson JJ, Lodge DM, Hill AM, Kratz TK, Perry WL et al (2004) A long-term rusty crayfish (Orconectes rusticus) invasion: dispersal patterns and community change in a north temperate lake. Can J Fish Aquat Sci 61:2255–2266. doi:10.1139/f04-170

    Article  Google Scholar 

  • Zhang YX, Richardson JS, Negishi JN (2004) Detritus processing, ecosystem engineering and benthic diversity: a test of predator-omnivore interference. J Anim Ecol 73:756–766. doi:10.1111/j.0021-8790.2004.00849.x

    Article  Google Scholar 

Download references

Acknowledgements

This survey was funded by the Piedmont regional government through the project “Action plan for the crayfish Austropotamobius pallipes complex (Crustacea Decapoda Astacidae) in Piedmont”, while the data analysis was supported by the European Commission within its STREP project EuMon (contract no. 006463). We would like to thank Giulia Bemporad, Luca Buonerba, Livio Favaro, Andrea Forchino, and Valentina Jackson for their help in the fieldwork, and James Brookes for improving the English of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Nowicki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowicki, P., Tirelli, T., Mussat Sartor, R. et al. Monitoring crayfish using a mark-recapture method: potentials, recommendations, and limitations. Biodivers Conserv 17, 3513–3530 (2008). https://doi.org/10.1007/s10531-008-9425-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-008-9425-1

Keywords

Navigation