Skip to main content
Log in

Vegetative versus sexual reproduction varies widely in Convolvulus arvensis across western North America

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Convolvulus arvensis L. (Convolvulaceae), commonly known as field bindweed, is a creeping perennial plant found throughout the temperate regions of the world. We performed genetic analysis on 634 plants from 64 populations across western North America. We found 399 distinct AFLP genotypes and none of these were shared across populations. The production of new shoots within populations was by both seed and rhizome, with reproduction by seed being slightly more common. A majority (54%) of the genetic variation was among populations, and we found two genetic clusters in the invasion that have a tendency to be predominant toward either the west or east of the invasion. Some populations appear to propagate entirely thru new ramets from rhizome, thus newly proposed root-mining biological control agents might play an important role in limiting spread of this noxious weed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  • Ahmed MS, Gazy SM, Hosny HA, Ibrahim HM, El-Enany MF (2010) Molecular characterization of three varieties of Convolvulus arvensis and their taxonomic relationships. Egypt J Agric Res 88:1321–1331

    Google Scholar 

  • Allendorf FW, Lundquist LL (2003) Introduction: population biology, evolution, and control of invasive species. Conserv Biol 17:24–30

    Article  Google Scholar 

  • Austin DF (2000) Bindweed (Convolvulus arvensis, Convolvulaceae) in North America, from medicine to menace. J Torrey Bot Soc 127:172–177

    Article  Google Scholar 

  • Barry S (1995) Vernal pools on California’s annual grasslands. Rangel Arch 17:173–175

    Google Scholar 

  • Bock DG, Caseys C, Cousens RD, Hahn MA, Heredia SM, Hübner S, Turner KG, Whitney KD, Rieseberg LH (2015) What we still don’t know about invasion genetics. Mol Ecol 24:2277–2297

    Article  PubMed  Google Scholar 

  • Boughton AJ, Pemberton RW (2011) Limited field establishment of a weed biocontrol agent, Floracarus perrepae (Acariformes: Eriophyidae), against old world climbing fern in Florida-a possible role of mite resistant plant genotypes. Environ Entomol 40:1448–1457

    Article  PubMed  Google Scholar 

  • Brown EO, Porter RH (1942) The viability and germination of seeds of Convolvulus arvensis L. and other perennial weeds. In: Research bulletin 294. Iowa State College of Agriculture and Mechanic Arts, Agricultural Experiment Station, Ames, IA, pp. 475–504.

  • Burdon JJ, Groves RH, Cullen JM (1981) The impact of biological control on the distribution and abundance of Chondrilla juncea in south-eastern Australia. J Appl Ecol 18:957–966

    Article  Google Scholar 

  • Campanella DM, McEvoy PB, Mundt CC (2009) Interaction effects of two biological control organisms on resistant and susceptible weed biotypes of Chondrilla juncea in western North America. Biol Control 50:50–59

    Article  Google Scholar 

  • Craemer C (1995) Host specificity, and release in South Africa, of Aceria malherbae Nuzzaci (Acari: Eriophyoidea), a natural enemy of Convolvulus arvensis L. (Convolvulaceae). Afr Entomol 3:213–215

    Google Scholar 

  • Davis S, Mangold J, Menalled F, Orloff N, Miller Z, Lehnhoff E (2018) A meta-analysis of field bindweed (Convolvulus arvensis) management in annual and perennial systems. Weed Sci 66:540–547

    Article  Google Scholar 

  • DeGennaro FP, Weller SC (1984a) Growth and reproductive characteristics of field bindweed (Convolvulus arvensis) biotypes. Weed Sci 32:525–528

    Article  Google Scholar 

  • DeGennaro FP, Weller SC (1984b) Differential susceptibility of field bindweed (Convolvulus arvensis) biotypes to glyphosate. Weed Sci 32:472–476

    Article  CAS  Google Scholar 

  • Dodd RS, Douhovnikoff V (2016) Adjusting to global change through clonal growth and epigenetic variation. Front Ecol Evol 4:86

    Article  Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Eckert CG (2002) The loss of sex in clonal plants. Ecology and evolutionary biology of clonal plants. Springer, Dordrecht, pp 279–298

    Chapter  Google Scholar 

  • EDDMapS (2022) Early detection & distribution mapping system. The University of Georgia - Center for Invasive Species and Ecosystem Health. http://www.eddmaps.org

  • Eriksson O (1989) Seedling dynamics and life histories in clonal plants. Oikos 55:231–238

    Article  Google Scholar 

  • Ersts PJ (2021) Geographic distance matrix generator (version 1.2.3). American Museum of Natural History, Center for Biodiversity and Conservation. http://biodiversityinformatics.amnh.org/open_source/gdmg

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman JM, Roelle JE, Gaskin JF, Pepper AE, Manhart JR (2008) Latitudinal variation in cold hardiness in introduced Tamarix and native Populus. Evol Appl 1:598–607

    Article  PubMed  PubMed Central  Google Scholar 

  • Garcia-Baudin JM, Darmency H (1979) Differences intraspecifiques chez Convolvulus arvensis L. Weed Res 19:219–224

    Article  Google Scholar 

  • Gaskin JF (2006) Clonal structure of invasive hoary cress (Lepidium draba) infestations. Weed Sci 54:428–434

    Article  CAS  Google Scholar 

  • Gaskin J, Kazmer D (2009) Introgression between invasive saltcedars (Tamarix chinensis and T. ramosissima) in the USA. Biol Invasions 11:1121–1130

    Article  Google Scholar 

  • Gaskin JF, Littlefield JL (2017) Invasive Russian knapweed (Acroptilon repens) creates large patches almost entirely by rhizomic growth. Invasive Plant Sci Manag 10:119–124

    Article  Google Scholar 

  • Gaskin JF, Bon MC, Cock MJ, Cristofaro M, De Biase A, De Clerck-Floate R, Ellison CA, Hinz HL, Hufbauer RA, Julien MH, Sforza R (2011) Applying molecular-based approaches to classical biological control of weeds. Biol Control 58:1–21

    Article  CAS  Google Scholar 

  • Gaskin JF, Schwarzländer M, Williams L, Gerber E, Hinz HL (2012) Minimal genetic diversity in the facultatively outcrossing perennial pepperweed (Lepidium latifolium) invasion. Biol Invasions 14:1797–1807

    Article  Google Scholar 

  • Gaskin JF, Schwarzländer M, Kinter CL, Smith JF, Novak SJ (2013) Propagule pressure, genetic structure, and geographic origins of Chondrilla juncea (Asteraceae): an apomictic invader on three continents. Am J Bot 100:1871–1882

    Article  PubMed  Google Scholar 

  • Gianoli E (2004) Plasticity of traits and correlations in two populations of Convolvulus arvensis (Convolvulaceae) differing in environmental heterogeneity. Int J Plant Sci 165:825–832

    Article  Google Scholar 

  • Goolsby JA, Van Klinken RD, Palmer WA (2006) Maximising the contribution of native-range studies towards the identification and prioritisation of weed biocontrol agents. Aust J Entomol 45:276–286

    Article  Google Scholar 

  • Grevstad F, Shaw R, Bourchier R, Sanguankeo P, Cortat G, Reardon RC (2013) Efficacy and host specificity compared between two populations of the psyllid Aphalara itadori, candidates for biological control of invasive knotweeds in North America. Biol Control 65:53–62

    Article  Google Scholar 

  • Hillis DM, Mable BK, Larson A, Davis SK, Zimmer EA (1996) Molecular systematics. Sinauer, Sunderland

    Google Scholar 

  • Holm LG, Pancho JV, Herberger JP, Plucknett DL (1977) The world’s worst weeds. Distribution and biology. University Press, Honolulu, USA. (Reprinted 1991 by Krieger Publishing Company, Malabar, Florida)

  • Huang Z, Liu Y, Zhang C, Jiang C, Huang H, Wei S (2019) Molecular basis of natural tolerance to glyphosate in Convolvulus arvensis. Sci Rep 9:1–10

    Google Scholar 

  • Idigbio (2022). Accessed Feb 2022 https://www.idigbio.org/portal/search

  • IPCN Chromosome Reports (2015) Index to plant chromosome numbers (IPCN), Tropicos website. St. Louis, Missouri, USA: Missouri Botanical Garden. http://tropicos.org/Project/IPCN

  • Julien MH, Griffiths MW (1998) Biological control of weeds. A world catalogue of agents and their target weeds, Fourth. CABI Publishing, Wallingford

    Google Scholar 

  • Karaman Y, Tursun N (2021) Germination biology of field bindweed seeds collected from different provinces. Bulg. J Agric Sci 27:1168–1177

    Google Scholar 

  • Keller SR, Taylor DR (2008) History, chance and adaptation during biological invasion: separating stochastic phenotypic evolution from response to selection. Ecol Lett 11:852–866

    Article  PubMed  Google Scholar 

  • Liu J, Dong M, Miao SL, Li ZY, Song MH, Wang RQ (2006) Invasive alien plants in China: role of clonality and geographical origin. Biol Invasions 8:1461–1470

    Article  Google Scholar 

  • Lym RG, Carlson RB (2002) Effect of leafy spurge (Euphorbia esula) genotype on feeding damage and reproduction of Aphthona spp.: implications for biological weed control. Biol Control 23:127–133

    Article  Google Scholar 

  • Lym RG, Nissen SJ, Rowe ML, Lee DJ, Masters RA (1996) Leafy spurge (Euphorbia esula) genotype affects gall midge (Spurgia esulae) establishment. Weed Sci 44:629–633

  • Marandia SJ, Salimpoura F, Shamlooa S (2014) Genetic divergence analysis among ten populations of Convolvulus arvensis L. by RAPD-PCR. Int J Plant Anim Environ Sci 4:734–740

    Google Scholar 

  • McClay AS, Clerck-Floate RA (2002) Convolvulus arvensis L., field bindweed (Convolvulaceae). In: Mason PG, Huber JT (eds) Biological control programmes in Canada 1981–2000. CABI Publishing, Wallingford, pp 331–337

    Google Scholar 

  • Mehrafarin A, Meighani F, Baghestani MA, Mirhadi MJ, Labbafi MR (2009) Investigation of morphophysiological variation in field bindweed (Convolvulus arvensis L.) populations of Karaj, Varamin, and Damavand in Iran. Afr J Plant Sci 3:64–73

    Google Scholar 

  • Moustafa M, Alamri S, Shati A, Al-Kahtani M, Alrumman S, Tawfek A (2019) DNA barcoding and morpho-anatomical characters of two forms of Convolvulus arvensis L. (Convolvulaceae) grown in Asir region, Saudi Arabia. Bangladesh J Plant Taxon 26:205–218

    Article  Google Scholar 

  • Muenscher W (1955) Weeds. Macmillan Co., New York

    Google Scholar 

  • Orloff N, Mangold J, Miller Z, Menalled F (2018) A meta-analysis of field bindweed (Convolvulus arvensis L.) and Canada thistle (Cirsium arvense L.) management in organic agricultural systems. Agr Ecosyst Environ 254:264–272

    Article  Google Scholar 

  • Parker IM, Rodriguez J, Loik ME (2003) An evolutionary approach to understanding the biology of invasions: local adaptation and general-purpose genotypes in the weed Verbascum thapsus. Conserv Biol 17:59–72

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pyšek P (1997) Clonality and plant invasions: can a trait make a difference. In: de Kroon H, Van Groenendael JM (eds) The ecology and evolution of clonal plants. Backhuys, Leiden, pp 405–427

    Google Scholar 

  • Rodríguez-Navarro S, Torres-Martínez G, Olivares-Orozco J (2004) Biological control of field bindweed (Convolvulus arvensis L.) using Aceria malherbae (Acari: Eriophyidae) in Mexico. Int J Acarol 30:153–155

    Article  Google Scholar 

  • Rohlf FJ (1992) NTSYS-PC: numerical taxonomy and multivariate analysis system. Exeter Software, Setauket

    Google Scholar 

  • Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE (2001) The population biology of invasive species. Annu Rev Ecol Syst 32:305–332

    Article  Google Scholar 

  • Smith L, De Lillo E, Amrine JW (2010) Effectiveness of eriophyid mites for biological control of weedy plants and challenges for future research. Exp Appl Acarol 51:115–149

    Article  CAS  PubMed  Google Scholar 

  • Sunar S, Agar A, Nardemir G (2015) Analysis of genetic diversity in bindweed (Convolvulus arvensis L.) populations using random amplified polymorphic DNA (RAPD) markers. J Biodivers Environ Sci 7:197–204

    Google Scholar 

  • Swan DG, Chancellor RJ (1976) Regenerative capacity of field bindweed roots. Weed Sci 24:306–308

    Article  Google Scholar 

  • Tanveer A, Tasneem M, Khaliq A, Javaid MM, Chaudhry MN (2013) Influence of seed size and ecological factors on the germination and emergence of field bindweed (Convolvulus arvensis). Planta Daninha 31:39–51

    Article  Google Scholar 

  • Thum RA (2018) Genetic variation and aquatic plant management: Key concepts and practical implications. J Aquat Plant Manag 56:101–106

    Google Scholar 

  • Timmons FL (1949) Duration of viability of bindweed seed under field conditions and experimental results in the control of bindweed seedlings. Agron J 41:130–133

    Article  Google Scholar 

  • Tominaga T, Weller SC (1992) Chromosome number of field bindweed (Convolvulus arvensis L.). Shinshu Univ Fac Agric Farm Rep 6:175–178

    Google Scholar 

  • Tropicos (2022) Accessed Mar 2022 https://www.tropicos.org/home

  • UCIPM (2022) Accessed Mar 2022 http://ipm.ucanr.edu/PMG/PESTNOTES/pn7462.html

  • USDA NRCS (2022) The PLANTS database. Accessed Mar 2022 http://plants.usda.gov

  • USFS FEIS (2022) Accessed Mar 2022 https://www.fs.fed.us/database/feis/plants/vine/conarv/all.html

  • Villaseñor JL, Espinosa-Garcia FJ (2004) The alien flowering plants of Mexico. Divers Distrib 10:113–123

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters PJ, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA-fingerprinting. Nucl Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddington KD (1976) Foraging patterns of halictid bees at flowers of Convolvulus arvensis. Psyche 83:112–119

    Article  Google Scholar 

  • Wang Z, Song H, Jiang D (2021) Complete chloroplast genome sequence of Convolvulus arvensis. Mitochondrial DNA Part B 6:1814–1815

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward SM, Gaskin JF, Wilson LM (2008) Ecological genetics of plant invasion: what do we know? Invasive Plant Sci Manag 1:98–109

    Article  Google Scholar 

  • Watkinson AR, Powell JC (1993) Seedling recruitment and the maintenance of clonal diversity in plant populations – a computer simulation of Ranunculus repens. J Ecol 81:707–717

    Article  Google Scholar 

  • Weaver SE, Riley WR (1982) The biology of Canadian weeds: 53. Convolvulus arvensis L. Can J Plant Sci 62:461–472

    Article  Google Scholar 

  • Westwood JH, Tominaga T, Weller SC (1997) Characterization and breakdown of self-incompatibility in field bindweed (Convolvulus arvensis L.). J Hered 88:459–465

    Article  Google Scholar 

  • Whitworth JW, Muzik TJ (1967) Differential response of selected clones of bindweed to 2, 4-D. Weeds 15:275–280

    Article  Google Scholar 

  • Wiese AF, Rea HE (1959) Bindweed (Convolvulus arvensis) control and seedling emergence as affected by tillage, 2,4-D and competitive crops. Agron J 51:672–672

    Article  Google Scholar 

  • Williams WI, Friedman JM, Gaskin JF, Norton AP (2014) Hybridization of an invasive shrub affects tolerance and resistance to defoliation by a biological control agent. Evol Appl 7:381–393

    Article  PubMed  PubMed Central  Google Scholar 

  • Winston RL, Schwarzländer M, Hinz HL, Day MD, Cock MJW, Julien MH (2019) Biological control of weeds: a world catalogue of agents and their target weeds. Based on FHTET-2014–04, USDA Forest Service, Forest Health Technology Enterprise Team. Accessed Mar 2021 https://www.ibiocontrol.org/catalog/

  • Wood JR, Williams BR, Mitchell TC, Carine MA, Harris DJ, Scotland RW (2015) A foundation monograph of Convolvulus L. (Convolvulaceae). PhytoKeys 51:1–282

    Article  CAS  Google Scholar 

  • Zhang YY, Zhang DY, Barrett SC (2010) Genetic uniformity characterizes the invasive spread of water hyacinth (Eichhornia crassipes), a clonal aquatic plant. Mol Ecol 19:1774–1786

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Liu Y, Zhang C, Wei S, Huang H (2011) Glyphosate-tolerant mechanisms in field bindweed Convolvulus arvensis. Acta Phytophylacica Sin 38:551–556

    Google Scholar 

  • Zouhar K (2004) Convolvulus arvensis. In: Fire effects information system, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Accessed Mar 2022 https://www.fs.fed.us/database/feis/plants/vine/conarv/all.html

Download references

Acknowledgements

We would like to thank S. Turner and S. Cesselli for samples from Canada; K. Mann and J. Lassey for producing AFLP data; A.F. Gaskin and S. Parsons for help collecting USA samples.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Gaskin.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 1713 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaskin, J.F., Cortat, G. & West, N.M. Vegetative versus sexual reproduction varies widely in Convolvulus arvensis across western North America. Biol Invasions 25, 2219–2229 (2023). https://doi.org/10.1007/s10530-023-03035-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-023-03035-1

Keywords

Navigation