Skip to main content
Log in

Using biased sampling data to model the distribution of invasive shot-hole borers in California

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The invasive shot-hole borers (ISHB), Coleoptera: Curculionidae: Scolytinae: Euwallacea spp. and their ambrosial fusaria symbionts were first detected in Southern California in 2003 and have since caused dieback and tree mortality in urban, agricultural, and natural environments. This research assesses the relative predictive ability of distribution models for ISHB. A series of 100-m resolution models were developed using the Maxent modeling tool to test the effects of three main parameters: length of sampling period, spatial extent, and spatial filtering. Five chronologically cumulative sampling periods, simulating stages of invasion, were used to train the models. To evaluate model predictions, we used independent test records from the 2012–2016 sampling period, as well as presence and absence data collected via 2018 field surveys. Testing the models against both datasets demonstrated that as length of sampling period increased, prediction errors decreased, and overall accuracy improved for predictions of ISHB host occurrence. All models achieved high presence-only, area under the receiver operating characteristic curve (AUCPO) values > 0.93 and correctly classified 87.7 ± 18.8% of independent test records, indicating high model performance regardless of the degree of temporal bias. Spatial filtering produced more discriminating results without compromising model sensitivity to test records. Sensitivity was consistently higher for models that used the larger spatial extent (state of California), which suggests that for an emerging species, larger backgrounds may produce less discriminating predictions. The relative contribution of the top environmental predictor variables, including minimum temperature of the coldest month, percent impervious surface, isothermality, and dry-season normalized difference vegetation index, differed according to the modeled spatial extent. Regardless of the parameters used, the study finds that ISHB distribution models reliably identified areas vulnerable to infestation. Such predictions, particularly those early in the study period, may have aided early containment and detection efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anderson RP, Gonzalez I (2011) Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol Model 222:2796–2811

    Article  Google Scholar 

  • Araújo MB, Guisan A (2006) Five (or so) challenges for species distribution modelling. J Biogeogr 33:1677–1688

    Article  Google Scholar 

  • Bean WT, Stafford R, Brashares JS (2012) The effects of small sample size and sample bias on threshold selection and accuracy assessment of species distribution models. Ecography 35:250–258

    Article  Google Scholar 

  • Boria RA, Olson LE, Goodman SM, Anderson RP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77

    Article  Google Scholar 

  • Brummer TJ, Maxwell BD, Higgs MD, Rew LJ, Franklin J (2013) Implementing and interpreting local-scale invasive species distribution models. Divers Distrib 19:919–932

    Article  Google Scholar 

  • California Department of Food and Agriculture (2016) California agricultural statistics review, 2015–2016. www.cdfa.ca.gov/statistics. Accessed 12 Sept 2017

  • Carrillo D, Narvaez T, Cossé AA, Stouthamer R, Cooperband M (2015) Attraction of Euwallacea nr. fornicatus (Coleoptera: Curculionidae: Scolytinae) to lures containing quercivorol. Fla Entomol 98:780–782

    Article  CAS  Google Scholar 

  • Congalton RG (1997) Exploring and evaluating the consequences of vector-to-raster and raster-to-vector conversion. Photogramm Eng Remote Sens 63:425–434

    Google Scholar 

  • Crooks JA (2005) Lag times and exotic species: the ecology and management of biological invasions in slow-motion. Ecoscience 12:316–329

    Article  Google Scholar 

  • DeRose RJ, Bentz BJ, Long JN, Shaw JD (2013) Effect of increasing temperatures on the distribution of spruce beetle in Engelmann spruce forests of the Interior West, USA. For Ecol Manag 308:198–206

    Article  Google Scholar 

  • Eatough Jones M, Kabashima J, Eskalen A, Dimson M, Mayorquin JS, Carrillo JD, Hanlon CC, Paine TD (2017) Evaluations of insecticides and fungicides for reducing attack rates of a new invasive ambrosia beetle (Euwallacea sp., Coleoptera: Curculionidae: Scolytinae) in infested landscape trees in California. J Econ Entomol 110:1611–1618

    Article  CAS  PubMed  Google Scholar 

  • Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMCC, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Elith J, Kearney M, Phillips S (2010) The art of modelling range-shifting species. Methods Ecol Evol 1:330–342

    Article  Google Scholar 

  • Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57

    Article  Google Scholar 

  • Epanchin-Niell RS, Liebhold AM (2015) Benefits of invasion prevention: effect of time lags, spread rates, and damage persistence. Ecol Econ 116:146–153

    Article  Google Scholar 

  • Eskalen A, Stouthamer R, Lynch SC, Twizeyimana M, Gonzalez A, Thibault T (2013) Host range of fusarium dieback and its ambrosia beetle (Coleoptera: Scolytinae) vector in southern California. Plant Dis 97:938–951

    Article  PubMed  Google Scholar 

  • Fourcade Y, Engler JO, Rodder D, Secondi J (2014) Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. PLoS ONE 9:1–13

    Article  CAS  Google Scholar 

  • Freeman S, Sharon M, Maymon M, Mendel Z, Protasov A, Aoki T, Eskalen A, O’Donnell K (2013) Fusarium euwallaceae sp. nov.—a symbiotic fungus of Euwallacea sp., an invasive ambrosia beetle in Israel and California. Mycologia 105:1595–1606

    Article  CAS  PubMed  Google Scholar 

  • Gilbert GS, Parker I (2016) The evolutionary ecology of plant disease: a phylogenetic perspective. Annu Rev Phytopathol 54:549–578

    Article  CAS  PubMed  Google Scholar 

  • Gilbert GS, Briggs H, Magarey R (2015) The impact of plant enemies shows a phylogenetic signal. PLoS ONE 10:1–11

    Google Scholar 

  • Giovanelli JG, de Siqueira MF, Haddad CF, Alexandrino J (2010) Modeling a spatially restricted distribution in the Neotropics: how the size of calibration area affects the performance of five presence-only methods. Ecol Model 221:215–224

    Article  Google Scholar 

  • Gomez DF, Skelton J, Steininger MS, Stouthamer R, Rugman-Jones P, Sittichaya W, Rabaglia RJ, Hulcr J (2018) Species delineation within the Euwallacea fornicatus (Coleoptera: Curculionidae) complex revealed by morphometric and phylogenetic analyses. Insect System Divers 2:1–11

    Article  Google Scholar 

  • Griffith GE, Omernik JM, Smith DW, Cook TD, Tallyn E, Moseley K, Johnson CB (2016) Ecoregions of California open-file report 2016–1021. U.S. Geological Survey. https://pubs.er.usgs.gov/publication/ofr20161021. Accessed 3 Mar 2017

  • Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Holcombe TR, Stohlgren TJ, Jarnevich CS (2010) From points to forecasts: predicting invasive species habitat suitability in the near term. Diversity 2:738–767

    Article  Google Scholar 

  • Homer CG, Dewitz JA, Yang L, Jin S, Danielson P, Xian G, Coulston J, Herold ND, Wickham JD, Megown K (2015) Completion of the 2011 National Land Cover Database for the conterminous United States-representing a decade of land cover change information. Photogramm Eng Remote Sens 81:345–354

    Google Scholar 

  • Jiménez-Valverde A, Peterson AT, Soberón J, Overton JM, Aragón P, Lobo JM (2011) Use of niche models in invasive species risk assessments. Biol Invasions 13:2785–2797

    Article  Google Scholar 

  • Kadmon R, Farber O, Danin A (2004) Effect of roadside bias on the accuracy of predictive maps produced by bioclimatic models. Ecol Appl 14:401–413

    Article  Google Scholar 

  • Katz TS, Zellmer AJ (2018) Comparison of model selection technique performance in predicting the spread of newly invasive species: a case study with Batrachochytrium salamandrivorans. Biol Invasions 20:2107–2119

    Article  Google Scholar 

  • Kramer-Schadt S, Niedballa J, Pilgrim JD, Schröder B, Lindenborn J, Reinfelder V, Stillfried M, Heckmann I, Scharf AK, Augeri DM, Cheyne SM, Hearn AJ, Ross J, MacDonoald DW, Mathai J, Eaton J, Marshall AJ, Semiadi G, Rustam R, Bernard H, Alfred R, Samejima H, Duckworth JW, Breitenmoser-Wuersten C, Belant JL, Hofer H, Wilting A (2013) The importance of correcting for sampling bias in MaxEnt species distribution models. Divers Distrib 19:1366–1379

    Article  Google Scholar 

  • Lippitt CD, Rogan J, Toledano J, Sangermano F, Eastman JR, Mastro V, Sawyer A (2008) Incorporating anthropogenic variables into a species distribution model to map gypsy moth risk. Ecol Model 210:339–350

    Article  Google Scholar 

  • Lobo JM, Jiménez-Valverde A, Real R (2008) AUC: a misleading measure of the performance of predictive distribution models. Glob Ecol Biogeogr 17:145–151

    Article  Google Scholar 

  • Lombardero MJ, Ayres MP, Ayres BD, Reeve JD (2000) Cold tolerance of four species of bark beetle (Coleoptera: Scolytidae) in North America. Environ Entomol 29:421–432

    Article  Google Scholar 

  • Ludington S, Moring BC, Miller RJ, Stone PA, Bookstrom AA, Bedford DR, Evans JG, Haxel GA, Nutt CJ, Flyn KS, Hopkins MJ (2005) Preliminary integrated geologic map databases for the United States, open-file report 2005-1305. U.S. Geological Survey. https://pubs.usgs.gov/of/2005/1305. Accessed 12 Oct 2016

  • Lynch SC, Twizeyimana M, Mayorquin JS, Wang DH, Na F, Kayim M, Kasson MT, Thu PQ, Bateman C, Rugman-Jones P, Hulcr J, Stouthamer R, Eskalen A (2016a) Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov.—two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. Mycologia 108:313–329

    Article  PubMed  Google Scholar 

  • Lynch SC, Eskalen A, Gilbert GS (2016b) New pest-disease complex threatens california forests. Cal-IPC News. http://www.cal-ipc.org/docs/resources/news/pdf/Cal-IPCNews_Summer2016.pdf. Accessed 28 Feb 2017

  • Mendel Z, Protasov A, Sharon M, Zveibil A, Yehuda SB, O’Donnell K, Rabaglia R, Wysoki M, Freeman S (2012) An Asian ambrosia beetle Euwallacea fornicatus and its novel symbiotic fungus Fusarium sp. pose a serious threat to the Israeli avocado industry. Phytoparasitica 40:235–238

    Article  Google Scholar 

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069

    Article  Google Scholar 

  • Na F, Carrillo JD, Mayorquin JS, Ndinga-Muniana C, Stajich JE, Stauthamer R, Huang Y, Chen C, Eskalen A (2018) Two novel fungal symbionts Fusarium kuroshium sp. nov. and Graphium kuroshium sp. nov. of Kuroshio shot hole borer (Euwallaceae sp. nr. fornicatus) cause Fusarium dieback on woody host species in California. Plant Dis 102:1154–1164

    Article  CAS  PubMed  Google Scholar 

  • Newbold T (2010) Applications and limitations of museum data for conservation and ecology, with particular attention to species distribution models. Prog Phys Geogr 34:3–22

    Article  Google Scholar 

  • O’Donnell K, Sink S, Libeskind-Hadas R, Hulcr J, Kasson MT, Ploetz RC, Konkol JL, Ploetz JN, Carrillo D, Campbell A, Duncan RE (2015) Discordant phylogenies suggest repeated host shifts in the Fusarium–Euwallacea ambrosia beetle mutualism. Fungal Genet Biol 82:277–290

    Article  PubMed  Google Scholar 

  • O’Donnell K, Libeskind-Hadas R, Hulcr J, Bateman C, Kasson MT, Ploetz RC, Konkol JL, Ploetz JN, Carillo D, Campbell A, Duncan RE, Lyanage PNH, Eskalen A, Lynch SC, Geiser DM, Freeman S, Mendel Z, Sharon M, Aoki T, Cossé AA, Rooney AP (2016) Invasive Asian Fusarium – Euwallacea ambrosia beetle mutualists pose a serious threat to forests, urban landscapes and the avocado industry. Phytoparasitica 44:435–442

    Article  Google Scholar 

  • Paine TD, Raffa KF, Harrington TC (1997) Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu Rev Entomol 42:179–206

    Article  CAS  PubMed  Google Scholar 

  • Parker IM, Saunders M, Bontrager M, Weitz AP, Hendricks R, Magarey R, Suiter K, Gilbert GS (2015) Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520:542–544

    Article  CAS  PubMed  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Peterson AT (2003) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433

    Article  PubMed  Google Scholar 

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. In: Proceedings of the twenty-first international conference on machine learning. ACM

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197

    Article  PubMed  Google Scholar 

  • Régnière J, Bentz B (2007) Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae. J Insect Physiol 53:559–572

    Article  CAS  PubMed  Google Scholar 

  • Rovzar C, Gillespie TW, Kawelo K (2016) Landscape to site variations in species distribution models for endangered plants. For Ecol Manag 369:20–28

    Article  Google Scholar 

  • RStudio Team (2015) RStudio: integrated development for R. RStudio, Inc., Boston, MA. http://www.rstudio.com/. Accessed 3 Oct 2017

  • Rushton SP, Ormerod SJ, Kerby G (2004) New paradigms for modelling species distributions? J Appl Ecol 41:193–200

    Article  Google Scholar 

  • Sidder AM, Kumar S, Laituri M, Sibold JS (2016) Using spatiotemporal correlative niche models for evaluating the effects of climate change on mountain pine beetle. Ecosphere 7:e01396

    Article  Google Scholar 

  • Stouthamer R, Rugman-Jones P, Thu PQ, Eskalen A, Thibault T, Hulcr J, Wang L, Jordal BH, Chen C, Cooperband M, Lin C, Kamata N, Lu S, Masuya H, Mendel Z, Rabaglia R, Sanguansub S, Shih H, Sittichaya W, Zong S (2017) Tracing the origin of a cryptic invader: phylogeography of the Euwallacea fornicatus (Coleoptera: Curculionidae: Scolytinae) species complex. Agric For Entomol 19:366–375

    Article  Google Scholar 

  • Syfert MM, Smith MJ, Coomes DA (2013) The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 8:e55158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarli VD, Grandcolas P, Pellens R (2018) The informative value of museum collections for ecology and conservation: a comparison with target sampling in the Brazilian Atlantic forest. PLoS ONE 13:e0205710

    Article  CAS  Google Scholar 

  • Uden DR, Allen CR, Angeler DG, Corral L, Fricke KA (2015) Adaptive invasive species distribution models: a framework for modeling incipient invasions. Biol Invasions 17:2831–2850

    Article  Google Scholar 

  • Umeda C, Eskalen A, Paine TD (2016) Polyphagous shot hole borer and fusarium dieback in California. In: Paine TD, Lieutier F (eds) Insects and diseases of mediterranean forest systems. Springer, Berlin, pp 757–767

    Chapter  Google Scholar 

  • Ungerer MJ, Ayres MP, Lombardero MJ (1999) Climate and the northern distribution limits of Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae). J Biogeogr 26:1133–1145

    Article  Google Scholar 

  • U.S. Geological Survey (2016) The National Map, 3D Elevation Program. U.S. Geological Survey. https://nationalmap.gov/3DEP. Accessed 5 Feb 2017

  • Václavík T, Meentemeyer RK (2009) Invasive species distribution modeling (iSDM): are absence data and dispersal constraints needed to predict actual distributions? Ecol Model 220:3248–3258

    Article  Google Scholar 

  • Václavík T, Meentemeyer RK (2012) Equilibrium or not? Modelling potential distribution of invasive species in different stages of invasion. Divers Distrib 18:73–83

    Article  Google Scholar 

  • Vale CG, Tarroso P, Brito JC (2014) Predicting species distribution at range margins: testing the effects of study area extent, resolution and threshold selection in the Sahara-Sahel transition zone. Divers Distrib 20:20–33

    Article  Google Scholar 

  • VanDerWal J, Shoo LP, Graham C, Williams SE (2009) Selecting pseudo-absence data for presence-only distribution modeling: how far should you stray from what you know? Ecol Model 220:589–594

    Article  Google Scholar 

  • Vaughan IP, Ormerod SJ (2003) Improving the quality of distribution models for conservation by addressing shortcomings in the field collection of training data. Conserv Biol 17:1601–1611

    Article  Google Scholar 

  • Venette RC, Kriticos DJ, Magarey RD, Koch FH, Baker RHA, Worner SP, Raboteaux NNG, McKenney DW, Dobesberger EJ, Yemshanov D, De Barro PJ, Hutchison WD, Fowler G, Kalaris TM, Pedlar J (2010) Pest risk maps for invasive alien species: a roadmap for improvement. Bioscience 60:349–362

    Article  Google Scholar 

  • Walker GA, Robertson MP, Gaertner M, Gallien L, Richardson DM (2017) The potential range of Ailanthus altissima (tree of heaven) in South Africa: the roles of climate, land use and disturbance. Biol Invasions 19:3675–3690

    Article  Google Scholar 

  • Warren DL, Seifert SN (2011) Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol Appl 21:335–342

    Article  PubMed  Google Scholar 

  • Welk E (2004) Constraints in range predictions of invasive plant species due to non-equilibrium distribution patterns: purple loosestrife (Lythrum salicaria) in North America. Ecol Model 179:551–567

    Article  Google Scholar 

  • West AM, Kumar S, Brown CS, Stohlgren TJ, Bromberg J (2016) Field validation of an invasive species Maxent model. Ecol Inform 36:126–134

    Article  Google Scholar 

  • Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

  • Xian G, Homer C, Dewitz J, Fry J, Hossain N, Wickham J (2011) The change of impervious surface area between 2001 and 2006 in the conterminous United States. Photogramm Eng Remote Sens 77:758–762

    Google Scholar 

  • Yackulic CB, Chandler R, Zipkin EF, Royle JA, Nichols JD, Campbell Grant EH, Veran S (2013) Presence-only modelling using MAXENT: when can we trust the inferences? Methods Ecol Evol 4:236–243

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Eskalen Lab at University of California (UC), Riverside; John Kabashima and UC Cooperative Extension, Orange County; and USDA Forest Service, Forest Health Protection for contributing invasive shot-hole borers survey data. Funding for the UC Cooperative Extension and UC Riverside surveys was provided by Orange County Parks and the California Avocado Commission, respectively. We would also like to thank UCLA Grand Challenges Sustainable LA for their support and Glen M. MacDonald and Yongwei Sheng for comments on an earlier draft. We thank two anonymous reviewers for providing constructive comments that significantly improved the manuscript.

Funding

This study was funded by the University of California, Los Angeles and the UCLA La Kretz Center for California Conservation Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monica Dimson.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimson, M., Lynch, S.C. & Gillespie, T.W. Using biased sampling data to model the distribution of invasive shot-hole borers in California. Biol Invasions 21, 2693–2712 (2019). https://doi.org/10.1007/s10530-019-02010-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-019-02010-z

Keywords

Navigation