Skip to main content

Advertisement

Log in

Management of invasive plants through ecological resistance

  • Perspectives and paradigms
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Despite debates on the real impact of plant invasion on native biodiversity, there remain many situations where exotic invasive plants must be managed and habitats restored. Restoration practices that build on plant community assembly principles could be useful to delay or prevent re-invasion after control, but there are still few syntheses of the biodiversity theory, ecological mechanisms and experimental evidence relevant to invasive plant management, possibly delaying applications. To provide such a synthesis, we review current knowledge on three key determinants of invasion success: biotic resistance, abiotic constraints, and propagule pressure. We elaborate on the ecological mechanisms at play for each determinant and emphasize, using case studies, their relevance for invasive plant management and ecological restoration. We find evidence that restoring a plant cover can enhance invasion resistance, but the challenge for both research and field applications is to understand how multiple determinants interact in relation to species traits in the fields. Failure to recognize these interactions and their effect on community assembly processes may explain some of the mixed species responses observed. While we need control and restoration case studies with local species at different sites, the development of a coherent, dynamic and adaptive framework around biotic/ecological resistance will have to go beyond the idiosyncrasy of the many species and systems being tested. Emphasizing the functional diversity of the restored community seems a promising approach when facing potentially multiple invaders and/or fluctuating abiotic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Adler PB, Fajardo A, Kleinhesselink AR, Kraft NJ (2013) Trait-based tests of coexistence mechanisms. Ecol Lett 16:1294–1306. doi:10.1111/ele.12157

    PubMed  Google Scholar 

  • Albert A, Brisson J, Dubé J, Lavoie C (2013) Do woody plants prevent the establishment of common reed along highways? Insights from Southern Quebec. Invas Plant Sci Manag 6:585–592. doi:10.1614/IPSM-D-13-00025.1

    Google Scholar 

  • Albert A, Brisson J, Belzile F, Turgeon J, Lavoie C (2015) Strategies for a successful plant invasion: the reproduction of Phragmites australis in north-eastern North America. J Ecol 103:1529–1537

    CAS  Google Scholar 

  • Ammondt SA, Litton CM (2012) Competition between native Hawaiian plants and the invasive grass Megathyrsus maximus: implications of functional diversity for ecological restoration. Restor Ecol 20:638–646

    Google Scholar 

  • Ashton IW, Miller AE, Bowman WD, Suding KN (2010) Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91:3252–3260. doi:10.1890/09-1849.1

    PubMed  Google Scholar 

  • Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, Schmid B (2006) Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett 9:1146–1156. doi:10.1111/j.1461-0248.2006.00963.x

    PubMed  Google Scholar 

  • Barton J, Fowler SV, Gianotti AF, Winks CJ, De Beurs M, Arnold GC, Forrester G (2007) Successful biological control of mist flower (Ageratina riparia) in New Zealand: agent establishment, impact and benefits to the native flora. Biol Control 40:370–385

    Google Scholar 

  • Berg JA, Meyer GA, Young EB (2016) Propagule pressure and environmental conditions interact to determine establishment success of an invasive plant species, glossy buckthorn (Frangula alnus), across five different wetland habitat types. Biol Invasions 18:1363–1373

    Google Scholar 

  • Blossey B (1999) Before, during and after: the need for long-term monitering in invasive plant species management. Biol Invasions 1:301–311

    Google Scholar 

  • Booth MS, Caldwell MM, Stark JM (2003) Overlapping resource use in three great basin species: implications for community invasibility and vegetation dynamics. J Ecol 91:36–48

    Google Scholar 

  • Byun C, de Blois S, Brisson J (2013) Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. J Ecol 101:128–139. doi:10.1111/1365-2745.12016

    Google Scholar 

  • Byun C, de Blois S, Brisson J (2015) Interactions between abiotic constraint, propagule pressure, and biotic resistance regulate plant invasion. Oecologia 178:285–296. doi:10.1007/s00442-014-3188-z

    PubMed  Google Scholar 

  • Cappuccino N, Carpenter D (2005) Invasive exotic plants suffer less herbivory than non-invasive exotic plants. Biol Lett 1:435–438

    PubMed  PubMed Central  Google Scholar 

  • Catford JA, Jansson R, Nilsson C (2009) Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers Distrib 15:22–40. doi:10.1111/j.1472-4642.2008.00521.x

    Google Scholar 

  • Chytrý M, Maskell LC, Pino J, Pyšek P, Vilà M, Font X, Smart SM (2008) Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J Appl Ecol 45:448–458

    Google Scholar 

  • Clark GF, Johnston EL (2011) Temporal change in the diversity–invasibility relationship in the presence of a disturbance regime. Ecol Lett 14:52–57. doi:10.1111/j.1461-0248.2010.01550.x

    PubMed  Google Scholar 

  • Colautti IR, Ricciardi A, Grigorovich IA, MacIsaac HJ (2004) Is invasion success explained by the enemy release hypothesis? Ecol Lett 7:721–733

    Google Scholar 

  • Collinge SK, Ray C, Gerhardt F (2011) Long-term dynamics of biotic and abiotic resistance to exotic species invasion in restored vernal pool plant communities. Ecol Appl 21:2105–2118. doi:10.1890/10-1094.1

    PubMed  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144. doi:10.1086/283241

    Google Scholar 

  • Corbin JD, D’Antonio CM (2004) Can carbon addition increase competitiveness of native grasses? A case study from California. Restor Ecol 12:36–43

    Google Scholar 

  • Culliney TW (2005) Benefits of classical biological control for managing invasive plants Crit Rev. Plant Sci 24:131–150

    Google Scholar 

  • Cutting KJ, Hough-Goldstein J (2013) Integration of biological control and native seeding to restore invaded plant communities. Restor Ecol 21:648–655. doi:10.1111/j.1526-100X.2012.00936.x

    Google Scholar 

  • Davis MA, Pelsor M (2001) Experimental support for a resource-based mechanistic model of invasibility. Ecol Lett 4:421–428. doi:10.1046/j.1461-0248.2001.00246.x

    Google Scholar 

  • Davis MA, Wrage KJ, Reich PB (1998) Competition between tree seedlings and herbaceous vegetation: support for a theory of resource supply and demand. J Ecol 86:652–661

    Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Google Scholar 

  • Dethier MN, Hacker SD (2005) Physical factors vs. biotic resistance in controlling the invasion of an estuarine marsh grass. Ecol Appl 15:1273–1283. doi:10.1890/04-0505

    Google Scholar 

  • Dietz H, Edwards PJ (2006) Recognition that causal processes change during plant invasion helps explain conflicts in evidence. Ecology 87:1359–1367. doi:10.1890/0012-9658(2006)87[1359:RTCPCD]2.0.CO;2

    PubMed  Google Scholar 

  • Drenovsky RE, Grewell BJ, D’Antonio CM, Funk JL, James JJ, Molinari N, Parker IM, Richards CL (2012) A functional trait perspective on plant invasion. Ann Bot 110:141–153. doi:10.1093/aob/mcs100

    PubMed  PubMed Central  Google Scholar 

  • Eisenhauer N, Schulz W, Scheu S, Jousset A (2013) Niche dimensionality links biodiversity and invasibility of microbial communities. Funct Ecol 27:282–288. doi:10.1111/j.1365-2435.2012.02060.x

    Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. The University of Chicago Press, London

    Google Scholar 

  • Emery SM, Gross KL (2007) Dominant species identity, not community evenness, regulates invasion in experimental grassland plant communities. Ecology 88:954–964. doi:10.1890/06-0568

    PubMed  Google Scholar 

  • Eschtruth AK, Battles JJ (2011) The importance of quantifying propagule pressure to understand invasion: an examination of riparian forest invasibility. Ecology 92:1314–1322. doi:10.1890/10-0857.1

    PubMed  Google Scholar 

  • Esler K, Prozesky H, Sharma G, McGeoch M (2010) How wide is the “knowing-doing” gap in invasion biology? Biol Invasions 12:4065–4075. doi:10.1007/s10530-010-9812-x

    Google Scholar 

  • Ewel JJ (1987) Restoration is the ultimate test of ecological theory. Restoration ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Fargione JE, Tilman D (2005) Diversity decreases invasion via both sampling and complementarity effects. Ecol Lett 8:604–611. doi:10.1111/j.1461-0248.2005.00753.x

    Google Scholar 

  • Fargione J, Brown CS, Tilman D (2003) Community assembly and invasion: an experimental test of neutral versus niche processes. Proc Natl Acad Sci USA 100:8916–8920. doi:10.1073/pnas.1033107100

    PubMed  PubMed Central  CAS  Google Scholar 

  • Firn J, MacDougall A, Schmidt S, Buckley Y (2010) Early emergence and resource availability can competitively favour natives over a functionally similar invader. Oecologia 163:775–784. doi:10.1007/s00442-010-1583-7

    PubMed  Google Scholar 

  • Fox BJ (1987) Species assembly and the evolution of community structure. Evol Ecol 1:201–213. doi:10.1007/bf02067551

    Google Scholar 

  • Frankow-Lindberg B (2012) Grassland plant species diversity decreases invasion by increasing resource use. Oecologia 169:793–802. doi:10.1007/s00442-011-2230-7

    PubMed  Google Scholar 

  • Frankow-Lindberg BE, Brophy C, Collins RP, Connolly J (2009) Biodiversity effects on yield and unsown species invasion in a temperate forage ecosystem. Ann Bot 103:913–921. doi:10.1093/aob/mcp008

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fraser LH, Karnezis JP (2005) A comparative assessment of seedling survival and biomass accumulation for fourteen wetland plant species grown under minor water-depth differences. Wetlands 25:520–530. doi:10.1672/0277-5212(2005)025[0520:ACAOSS]2.0.CO;2

    Google Scholar 

  • Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW, Smith MD, Stohlgren TJ, Tilman D, Holle BV (2007) The invasion paradox: reconciling pattern and process in species invasions. Ecology 88:3–17

    PubMed  CAS  Google Scholar 

  • Fukami T, Bezemer TM, Mortimer SR, van der Putten WH (2005) Species divergence and trait convergence in experimental plant community assembly. Ecol Lett 8:1283–1290. doi:10.1111/j.1461-0248.2005.00829.x

    Google Scholar 

  • Funk JL, Cleland EE, Suding KN, Zavaleta ES (2008) Restoration through reassembly: plant traits and invasion resistance. Trends Ecol Evol 23:695–703

    PubMed  Google Scholar 

  • Gaudet CL, Keddy PA (1988) A comparative approach to predicting competitive ability from plant traits. Nature 334:242–243

    Google Scholar 

  • Gerhardt F, Collinge SK (2003) Exotic plant invasions of vernal pools in the Central Valley of California, USA. J Biogeogr 30:1043–1052. doi:10.1046/j.1365-2699.2003.00911.x

    Google Scholar 

  • Gilbert B, Levine JM (2013) Plant invasions and extinction debts. Proc Natl Acad Sci USA 110:1744–1749. doi:10.1073/pnas.1212375110

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gleason HA (1926) The individualistic concept of the plant association. Bull Torrey Bot Club 53:7. doi:10.2307/2479933

    Google Scholar 

  • Godoy O, Levine JM (2013) Phenology effects on invasion success: insights from coupling field experiments to coexistence theory. Ecology. doi:10.1890/13-1157.1

    Article  Google Scholar 

  • Goldstein L, Suding K (2013) Applying competition theory to invasion: resource impacts indicate invasion mechanisms in California shrublands. Biol Invasions. doi:10.1007/s10530-013-0513-0

    Article  Google Scholar 

  • Grevstad FS (2006) Ten-year impacts of the biological control agents Galerucella pusilla and G. calmariensis (Coleoptera: Chrysomelidae) on purple loosestrife (Lythrum salicaria) in Central New York State. Biol Control 39:1–8

    Google Scholar 

  • Grime JP (1998) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J Ecol 86:902–910. doi:10.1046/j.1365-2745.1998.00306.x

    Google Scholar 

  • Hobbs RJ, Huenneke LF (1992) Disturbance diversity, and invasion: implications for conservation. Conserv Biol 6:324–337

    Google Scholar 

  • Holle BV, Simberloff D (2005) Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86:3212–3218. doi:10.1890/05-0427

    Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

    Google Scholar 

  • Iannone BV III, Galatowitsch SM (2008) Altering light and soil N to limit phalaris arundinacea reinvasion in sedge meadow restoration. Restor Ecol 16:689–701

    Google Scholar 

  • Ives AR, Klug JL, Gross K (2000) Stability and species richness in complex communities. Ecol Lett 3:399–411. doi:10.1046/j.1461-0248.2000.00144.x

    Google Scholar 

  • Kalusová V, Chytrý M, Peet RK, Wentworth TR (2015) Intercontinental comparison of habitat levels of invasion between temperate North America and Europe. Ecology 96:3363–3373

    PubMed  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Google Scholar 

  • Kennedy TA, Naeem S, Howe KM, Knops JMH, Tilman D, Reich P (2002) Biodiversity as a barrier to ecological invasion. Nature 417:636–638

    PubMed  CAS  Google Scholar 

  • Kettenring KM, Adams CR (2011) Lessons learned from invasive plant control experiments: a systematic review and meta-analysis. J Appl Ecol 48:970–979. doi:10.1111/j.1365-2664.2011.01979.x

    Google Scholar 

  • Knight TM, Dunn JL, Smith LA, Davis J, Kalisz S (2009) Deer facilitate invasive plant success in a Pennsylvania forest understory. Nat Areas J 29:110–116

    Google Scholar 

  • Kunstler G, Lavergne S, Courbaud B, Thuiller W, Vieilledent G, Zimmermann NE, Kattge J, Coomes DA (2012) Competitive interactions between forest trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: implications for forest community assembly. Ecol Lett 15:831–840. doi:10.1111/j.1461-0248.2012.01803.x

    PubMed  PubMed Central  Google Scholar 

  • Larson DL, Bright J, Drobney P, Larson JL, Palaia N, Rabie PA, Vacek S, Wells D (2011) Effects of planting method and seed mix richness on the early stages of tallgrass prairie restoration. Biol Conserv 144:3127–3139

    Google Scholar 

  • Larson DL, Bright J, Drobney P, Larson JL, Palaia N, Rabie PA, Vacek S, Wells D (2013) Using prairie restoration to curtail invasion of Canada thistle: the importance of limiting similarity and seed mix richness. Biol Invasions 15:2049–2063

    Google Scholar 

  • Leffler AJ, Leonard ED, James JJ, Monaco TA (2014) Invasion is contingent on species assemblage and invasive species identity in experimental rehabilitation plots. Rangel Ecol Manag 67:657–666

    Google Scholar 

  • Levine JM (2000) Species diversity and biological invasions: relating local process to community pattern. Science 288:852–854. doi:10.1126/science.288.5467.852

    PubMed  CAS  Google Scholar 

  • Levine JM, D’Antonio CM (1999) Elton revisited: a review of evidence linking diversity and invasibility. Oikos 87:15–26. doi:10.2307/3546992

    Google Scholar 

  • Levine JM, D’Antonio CM (2003) Forecasting biological invasions with increasing international trade. Conserv Biol 17:322–326

    Google Scholar 

  • Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis of biotic resistance to exotic plant invasions. Ecol Lett 7:975–989. doi:10.1111/j.1461-0248.2004.00657.x

    Google Scholar 

  • Lindig-Cisneros R, Zedler JB (2002) Relationships between canopy complexity and germination microsites for Phalaris arundinacea L. Oecologia 133:159–167. doi:10.1007/s00442-002-1020-7

    PubMed  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228. doi:10.1016/j.tree.2005.02.004

    PubMed  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn TM (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers Distrib 15:904–910. doi:10.1111/j.1472-4642.2009.00594.x

    Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536

    Google Scholar 

  • Loreau M, Hector A (2001) Partitioning selection and complementarity in biodiversity experiments. Nature 412:72–76

    PubMed  CAS  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808. doi:10.1126/science.1064088

    PubMed  CAS  Google Scholar 

  • Lulow ME (2006) Invasion by non-native annual grasses: the importance of species biomass, composition, and time among California native grasses of the central valley. Restor Ecol 14:616–626. doi:10.1111/j.1526-100X.2006.00173.x

    Google Scholar 

  • Macarthur R, Levins R (1967) The limiting similarity, convergence, and divergence of coexisting species. Am Nat 101:377–385

    Google Scholar 

  • MacDougall AS, Gilbert B, Levine JM (2009) Plant invasions and the niche. J Ecol 97:609–615. doi:10.1111/j.1365-2745.2009.01514.x

    Google Scholar 

  • Meiman P, Redente E, Paschke M (2009) Diffuse knapweed (Centaurea diffusa Lam.) seedling emergence and establishment in a Colorado grassland. Plant Ecol 201:631–638

    Google Scholar 

  • Melbourne BA, Cornell HV, Davies KF, Dugaw CJ, Elmendorf S, Freestone AL, Hall RJ, Harrison S, Hastings A, Holland M, Holyoak M, Lambrinos J, Moore K, Yokomizo H (2007) Invasion in a heterogeneous world: resistance, coexistence or hostile takeover? Ecol Lett 10:77–94. doi:10.1111/j.1461-0248.2006.00987.x

    PubMed  Google Scholar 

  • Miller AL, Diez JM, Sullivan JJ, Wangen SR, Wiser SK, Meffin R, Duncan RP (2014) Quantifying invasion resistance: the use of recruitment functions to control for propagule pressure. Ecology 95:920–929. doi:10.1890/13-0655.1

    PubMed  Google Scholar 

  • Minchinton TE, Bertness MD (2003) Disturbance-mediated competition and the spread of phragmites austraus in a coastal marsh. Ecol Appl 13:1400–1416

    Google Scholar 

  • Mitchell CE, Power AG (2003) Release of invasive plants from fungal and viral pathogens. Nature 421:625

    PubMed  CAS  Google Scholar 

  • Mwangi PN, Schmitz M, Scherber C, Roscher C, Schumacher J, Scherer-Lorenzen M, Weisser WW, Schmid B (2007) Niche pre-emption increases with species richness in experimental plant communities. J Ecol 95:65–78. doi:10.1111/j.1365-2745.2006.01189.x

    Google Scholar 

  • Naeem S, Knops JMH, Tilman D, Howe KM, Kennedy T, Gale S (2000) Plant diversity increases resistance to invasion in the absence of covarying extrinsic factors. Oikos 91:97–108. doi:10.1034/j.1600-0706.2000.910108.x

    Google Scholar 

  • Nemec KT, Allen CR, Helzer CJ, Wedin DA (2013) Influence of richness and seeding density on invasion resistance in experimental tallgrass prairie restorations. Ecol Restor 31:168–185

    Google Scholar 

  • Parepa M, Fischer M, Bossdorf O (2013) Environmental variability promotes plant invasion. Nat Commun 4:1604

    PubMed  Google Scholar 

  • Parker IM, Gilbert GS (2007) When there is no escape: the effects of natural enemies on native, invasive, and noninvasive plants. Ecology 88:1210–1224

    PubMed  Google Scholar 

  • Pauchard A, Shea K (2006) Integrating the study of non-native plant invasions across spatial scales. Biol Invasions 8:399–413. doi:10.1007/s10530-005-6419-8

    Google Scholar 

  • Perelman SB, Chaneton EJ, Batista WB, Burkart SE, LeÓN RJC (2007) Habitat stress, species pool size and biotic resistance influence exotic plant richness in the Flooding Pampa grasslands. J Ecol 95:662–673. doi:10.1111/j.1365-2745.2007.01255.x

    Google Scholar 

  • Perry L, Cronin S, Paschke M (2009) Native cover crops suppress exotic annuals and favor native perennials in a greenhouse competition experiment. Plant Ecol 204:247–259

    Google Scholar 

  • Peter CR, Burdick DM (2010) Can plant competition and diversity reduce the growth and survival of exotic Phragmites australis invading a tidal marsh? Estuar Coasts 33:1225–1236. doi:10.1007/s12237-010-9328-8

    Google Scholar 

  • Pokorny ML, Sheley RL, Zabinski CA, Engel RE, Svejcar TJ, Borkowski JJ (2005) Plant functional group diversity as a mechanism for invasion resistance. Restor Ecol 13:448–459. doi:10.1111/j.1526-100X.2005.00056.x

    Google Scholar 

  • Price JN, Pärtel M (2013) Can limiting similarity increase invasion resistance? A meta-analysis of experimental studies. Oikos 122:649–656. doi:10.1111/j.1600-0706.2012.00121.x

    Google Scholar 

  • Prieur-Richard AH, Lavorel S, Grigulis K, Dos Santos A (2000) Plant community diversity and invasibility by exotics: invasion of Mediterranean old fields by Conyza bonariensis and Conyza canadensis. Ecol Lett 3:412–422. doi:10.1046/j.1461-0248.2000.00157.x

    Google Scholar 

  • Prober SM, Thiele KR, Lunt ID, Koen T (2005) Restoring ecological function in temperate grassy woodlands: manipulating soil nutrients, exotic annuals and native perennial grasses through carbon supplements and spring burns. J Appl Ecol 42:1073–1085

    CAS  Google Scholar 

  • Procheş Ş, Wilson JRU, Richardson DM, Rejmánek M (2008) Searching for phylogenetic pattern in biological invasions. Glob Ecol Biogeogr 17:5–10. doi:10.1111/j.1466-8238.2007.00333.x

    Google Scholar 

  • Pysek P, Chytry M (2014) Habitat invasion research: where vegetation science and invasion ecology meet. J Veg Sci 25:1181–1187. doi:10.1111/jvs.12146

    Google Scholar 

  • Quinn LD, Holt JS (2009) Restoration for resistance to invasion by giant reed (Arundo donax). Invas Plant Sci Manage 2:279–291. doi:10.1614/ipsm-09-001.1

    Google Scholar 

  • Reinhardt Adams C, Galatowitsch SM (2008) The transition from invasive species control to native species promotion and its dependence on seed density thresholds. Appl Veg Sci 11:131–138. doi:10.3170/2007-7-18335

    Google Scholar 

  • Rinella MJ, Pokorny ML, Rekaya R (2007) Grassland invader responses to realistic changes in native species richness. Ecol Appl 17:1824–1831

    PubMed  Google Scholar 

  • Sax DF, Stachowicz JJ, Brown JH, Bruno JF, Dawson MN, Gaines SD, Grosberg RK, Hastings A, Holt RD, Mayfield MM, O Connor MI, Rice WR (2007) Ecological and evolutionary insights from species invasions. Trends Ecol Evolut (Personal edition) 22:465–471

    Google Scholar 

  • Schamp B, Aarssen L (2010) The role of plant species size in invasibility: a field experiment. Oecologia 162:995–1004. doi:10.1007/s00442-009-1499-2

    PubMed  Google Scholar 

  • Shea K, Chesson P (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Google Scholar 

  • Sheley RL, Half ML (2006) Enhancing native forb establishment and persistence using a rich seed mixture. Restor Ecol 14:627–635

    Google Scholar 

  • Simberloff D (2005) Non-native species do threaten the natural environment! J Agr Environ Ethic 18:595–607. doi:10.1007/s10806-005-2851-0

    Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol S 40:81–102. doi:10.1146/annurev.ecolsys.110308.120304

    Google Scholar 

  • Simmons MT (2005) Bullying the bullies: the selective control of an exotic, invasive annual (Rapistrum rugosum) by oversowing with a competitive native species (Gaillardia pulchella). Restor Ecol 13:609–615

    Google Scholar 

  • Stachowicz JJ, Tilman D (2005) Species invasions and the relationships between species diversity, community saturation, and ecosystem functioning. In: Sax DF, Stachowicz JJ, Gaines SD (eds) Species invasions: insights into ecology, evolution, and biogeography. Sinauer, Sunderland, pp 41–64

    Google Scholar 

  • Stuble KL, Souza L (2016a) Priority effects: natives, but not exotics, pay to arrive late. J Ecol 104:987–993

    Google Scholar 

  • Stuble KL, Souza L (2016b) Priority effects: natives, but not exotics, pay to arrive late. J Ecol 104(4):987–993

    Google Scholar 

  • Symstad AJ (2000) A test of the effects of functional group richness and composition on grassland invasibility. Ecology 81:99–109

    Google Scholar 

  • Thomas CD, Palmer G (2015) Non-native plants add to the British flora without negative consequences for native diversity. Proc Natl Acad Sci 112:4387–4392

    PubMed  PubMed Central  CAS  Google Scholar 

  • Thomsen MA, Corbin JD, D’Antonio CM (2006a) The effect of soil nitrogen on competition between native and exotic perennial grasses from northern coastal California. Plant Ecol 186:23–35

    Google Scholar 

  • Thomsen MA, D’Antonio CM, Suttle KB, Sousa WP (2006b) Ecological resistance, seed density and their interactions determine patterns of invasion in a California coastal grassland. Ecol Lett 9:160–170. doi:10.1111/j.1461-0248.2005.00857.x

    PubMed  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Ritchie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302. doi:10.1126/science.277.5330.1300

    CAS  Google Scholar 

  • Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632

    PubMed  CAS  Google Scholar 

  • Van Driesche R, Carruthers R, Center T, Hoddle M, Hough-Goldstein J, Morin L, Smith L, Wagner D, Blossey B, Brancatini V (2010) Classical biological control for the protection of natural ecosystems. Biol Control 54:S2–S33

    Google Scholar 

  • Van Kleunen M, Fischer M (2009) Release from foliar and floral fungal pathogen species does not explain the geographic spread of naturalized North American plants in Europe. J Ecol 97:385–392. doi:10.1111/j.1365-2745.2009.01483.x

    Google Scholar 

  • Van Kleunen M, Johnson SD (2007) South African Iridaceae with rapid and profuse seedling emergence are more likely to become naturalized in other regions. J Ecol 95:674–681. doi:10.1111/j.1365-2745.2007.01250.x

    Google Scholar 

  • van Ruijven J, de Deyn GB, Berendse F (2003) Diversity reduces invasibility in experimental plant communities: the role of plant species. Ecol Lett 6:910–918. doi:10.1046/j.1461-0248.2003.00516.x

    Google Scholar 

  • Verdú M, Traveset A (2005) Early emergence enhances plant fitness: a phylogenetically controlled meta-analysis. Ecology 86:1385–1394

    Google Scholar 

  • Von Holle B (2005) Biotic resistance to invader establishment of a southern Appalachian plant community is determined by environmental conditions. J Ecol 93:16–26. doi:10.1111/j.0022-0477.2004.00946.x

    Google Scholar 

  • Von Holle B, Simberloff D (2004) Testing Fox’s assembly rule: does plant invasion depend on recipient community structure? Oikos 105:551–563. doi:10.1111/j.0030-1299.2004.12597.x

    Google Scholar 

  • Wang J, Seliskar D, Gallagher J, League M (2006a) Blocking Phragmites australis reinvasion of restored marshes using plants selected from wild populations and tissue culture. Wetl Ecol Manag 14:539–547. doi:10.1007/s11273-006-9006-6

    CAS  Google Scholar 

  • Wang Q, Wang C, Zhao B, Ma Z, Luo Y, Chen J, Li B (2006b) Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invasibility of habitats. Biol Invasions 8:1547–1560

    Google Scholar 

  • Warren RJ, Bahn V, Bradford MA (2012) The interaction between propagule pressure, habitat suitability and density-dependent reproduction in species invasion. Oikos 121:874–881

    Google Scholar 

  • Weiher E, Keddy PA (1995) Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74:159–164

    Google Scholar 

  • Weltzin JF, Muth NZ, Von Holle B, Cole PG (2003) Genetic diversity and invasibility: a test using a model system with a novel experimental design. Oikos 103:505–518. doi:10.1034/j.1600-0706.2003.12389.x

    Google Scholar 

  • Yeates AG, Schooler SS, Garono RJ, Buckley YM (2012) Biological control as an invasion process: disturbance and propagule pressure affect the invasion success of Lythrum salicaria biological control agents. Biol Invasions 14:255–271

    Google Scholar 

  • Young TP (2001) Community succession and assembly Ecological restoration, North America 19:5

  • Zedler JB, Kercher S (2004) Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. Crit Rev Plant Sci 23:431–452. doi:10.1080/07352680490514673

    Google Scholar 

Download references

Acknowledgements

This work was funded by grants from the Natural Sciences and Engineering Research Council of Canada to SdB and JB and from the Fonds de recherche Nature et Technologies to SdB. This research was also supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2015R1A6A3A01058185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaeho Byun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byun, C., de Blois, S. & Brisson, J. Management of invasive plants through ecological resistance. Biol Invasions 20, 13–27 (2018). https://doi.org/10.1007/s10530-017-1529-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1529-7

Keywords

Navigation