Skip to main content
Log in

Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence

  • Insect Invasions
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Some of the most devastating diseases of trees involve associations between forest insects and microorganisms. Although a small number of native insect-microorganism symbioses can cause tree mortality, the majority of associations with tree health implications involve one or more exotic organisms. Here, we divide damaging symbioses between forest insects and microorganisms into four categories based on the native/exotic status of the species involved: (1) insect and microorganism are native; (2) insect is native, microorganism is exotic; (3) insect is exotic, microorganism is native; and (4) insect and microorganism are both exotic. For each category, we describe several well-researched examples of forest insect symbioses and discuss some of the consequences of the types of interactions within each category. We then discuss priorities for research on forest insect symbioses that could help to further elucidate patterns in the complexity of such interactions in the context of invasion biology. We argue that a nuanced understanding of insect-pathogen relationships is lacking, even for the few well-studied examples. Because novel associations between insects, microorganisms, and trees are increasing with globalization, such symbioses and their potential to negatively impact forest ecosystems demand focused research in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akbulut S, Stamps WT (2012) Insect vectors of the pinewood nematode: a review of the biology and ecology of Monochamus species. Forest Pathol 42:89–99

    Article  Google Scholar 

  • Al Adawi AO, Barnes I, Khan IA et al (2013) Ceratocystis manginecans associated with a serious wilt disease of two native legume trees in Oman and Pakistan. Australas Plant Pathol 42:179–193

    Article  Google Scholar 

  • Alamouti SM, Wang V, DiGuistini S et al (2011) Gene genealogies reveal cryptic species and host preferences for the pine fungal pathogen Grosmannia clavigera. Mol Ecol 20:2581–2602

    Article  PubMed  Google Scholar 

  • Aukema BH, Carroll AL, Zu J et al (2006) Landscape level analysis of mountain pine beetle in British Columbia, Canada: spatiotemporal development and spatial synchrony within the present outbreak. Ecography 29:427–441

    Article  Google Scholar 

  • Aukema JE, McCullough DG, Von Holle B et al (2010) Historical accumulation of nonindigenous forest pests in the continental United States. Bioscience 60:886–897

    Article  Google Scholar 

  • Ayres MP, Lombardero MJ (2000) Assessing the consequences of climate change for forest herbivore and pathogens. Sci Total Environ 262:263–286

    Article  CAS  PubMed  Google Scholar 

  • Ayres MP, Wilkens RT, Ruel JJ et al (2000) Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81:2198–2210

    Article  Google Scholar 

  • Bentz BJ, Six DL (2006) Ergosterol content of fungi associated with Dendroctonus ponderosae and Dendroctonus rufipennis (Coleoptera: Curculionidae, Scolytinae). Ann Entomol Soc Am 99:189–194

    Article  CAS  Google Scholar 

  • Blouin MS (2002) Molecular prospecting for cryptic species of nematodes: mitochondrial DNA versus internal transcribed spacer. Int J Parasitol 32:527–531

    Article  CAS  PubMed  Google Scholar 

  • Bordeaux JM, Dean JFD (2012) Susceptibility and response of pines to Sirex noctilio. In: Slippers B, de Groot P, Wingfield MJ (eds) The Sirex woodwasp and its fungal symbiont: research and management of a worldwide invasive pest. Springer, New York, pp 31–50

    Chapter  Google Scholar 

  • Brasier CM (1990) China and the origins of Dutch elm disease—an appraisal. Plant Pathol 39:5–16

    Article  Google Scholar 

  • Brasier CM (2001) Rapid evolution of introduced plant pathogens via interspecific hybridization. Bioscience 51:123–133

    Article  Google Scholar 

  • Brockerhoff EG, Bain J, Kimberley M et al (2006) Interception frequency of exotic bark and ambrosia beetles (Coleoptera: Scolytinae) and relationship with establishment in New Zealand and worldwide. Can J For Res 36:289–298

    Article  Google Scholar 

  • Cale JA, McNulty SA, Teale SA et al (2013) The impact of beech thickets on biodiversity. Biol Invasions 15:699–706

    Article  Google Scholar 

  • Carillo D, Duncan RE, Ploetz JN et al (2014) Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathol 63:54–62

    Article  Google Scholar 

  • Castlebury LA, Rossman AY, Hyten AS (2006) Phylogenetic relationships of Neonectria/Cylindrocarpon on Fagus in North America. Can J Bot 84:1417–1433

    Article  CAS  Google Scholar 

  • D’Arcy CJ (2000) Dutch elm disease. Plant Health Instr. doi:10.1094/PHI-I-2000-0721-02

    Google Scholar 

  • Dropkin VH, Foundin AS, Kondo E et al (1981) Pine wood nematode: a threat to U.S. forests? Plant Dis 65:1022–1027

    Article  Google Scholar 

  • Engel P, Moran NA (2013) The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev 37:699–735

    Article  CAS  PubMed  Google Scholar 

  • Garnas JR, Ayres MP, Liebhold AM et al (2011a) Subcontinental impacts of an invasive tree disease on forest structure and dynamics. J Ecol 99:532–541

    Google Scholar 

  • Garnas JR, Houston DR, Ayres MP et al (2011b) Disease ontogeny overshadows effects of climate and species interactions on population dynamics in a nonnative forest disease complex. Ecography 35:412–421

    Article  Google Scholar 

  • Garnas JR, Houston DR, Twery MJ et al (2013) Inferring controls on the epidemiology of beech bark disease from spatial patterning of disease organisms. Agric For Entomol 15:146–156

    Article  Google Scholar 

  • Gibbs JN (1978) Intercontinental epidemiology of Dutch elm disease. Annu Rev Phytopathol 16:287–307

    Article  Google Scholar 

  • Haack RA, Poland TM (2001) Evolving management strategies for a recently discovered exotic forest pest: the pine shoot beetle, Tomicus piniperda (Coleoptera). Biol Invasions 3:307–322

    Article  Google Scholar 

  • Haack RA, Rabaglia RJ (2013) Exotic bark and ambrosia beetles in the USA: potential and current invaders. In: Peña J (ed) Potential invasive pests of agricultural crops. CABI, Wallingford, pp 48–74

    Chapter  Google Scholar 

  • Harrington TC, Fraedrich SW, Aghayeva DN (2008) Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 104:399–404

    Google Scholar 

  • Harrington TC, Yun HY, Lu S-S et al (2011) Isolations from the redbay ambrosia beetle, Xyleborus glabratus, confirm that the laurel wilt pathogen, Raffaelea lauricola, originated in Asia. Mycologia 103:1028–1036

    Article  PubMed  Google Scholar 

  • Houston DR (1994) Major new tree disease epidemics: beech bark disease. Annu Rev Phytopathol 32:75–86

    Article  Google Scholar 

  • Hulcr J, Dunn RR (2011) The sudden emergence of pathogenicity in insect–fungus symbioses threatens naive forest ecosystems. Proc R Soc B 278:2866–2873

    Article  PubMed  PubMed Central  Google Scholar 

  • Hurley BP, Slippers B, Wingfield MJ (2007) A comparison of control results for the alien invasive woodwasp, Sirex noctilio, in the southern hemisphere. Agric For Entomol 9:159–171

    Article  Google Scholar 

  • Hurst GDD, Jiggins FM (2005) Problems with mitochondrial DNA as a marker in population, phylogeographical, and phylogenetic studies: the effects of inherited symbionts. Proc R Soc B 272:1525–1534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs K, Bergdahl DR, Wingfield MJ et al (2004) Leptographium wingfieldii introduced into North America and found associated with exotic Tomicus piniperda and native bark beetles. Mycol Res 108:411–418

    Article  PubMed  Google Scholar 

  • Janes JK, Li Y, Keeling CI et al (2014) How the mountain pine beetle (Dendroctonus ponderosae) breached the Canadian Rocky Mountains. Mol Biol Evol 31:1803–1815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janzen DH (1980) When is it coevolution? Evolution 34:611–612

    Article  Google Scholar 

  • Jordal BH, Cognato AI (2012) Molecular phylogeny of bark and ambrosia beetles reveals multiple origins of fungus farming during periods of global warming. BMC Evol Biol 12:133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jordal BH, Kambestad M (2014) DNA barcoding of bark and ambrosia beetles reveals excessive NUMTs and consistent east-west divergence across Palearctic forests. Mol Ecol Res 14:7–17

    Article  CAS  Google Scholar 

  • Kasson M, Livingston W (2009) Spatial distribution of Neonectria species associated with beech bark disease in northern Maine. Mycologia 101:190–195

    Article  PubMed  Google Scholar 

  • Keane RM, Crawley MJ (2002) Exotic plant invasions and the enemy release hypothesis. Trends Ecol Evol 17:164–170

    Article  Google Scholar 

  • Krokene P, Solheim H (1998) Pathogenicity of four blue-stain fungi associated with nonaggressive bark beetles. Phytopathology 8:39–44

    Article  Google Scholar 

  • Kulinich OA, Orlinskii PD (1998) Distribution of conifer beetles (Scolytidae, Curculionidae, Cerambycidae) and wood nematodes (Bursaphelenchus spp.) in European and Asian Russia. EPPO Bull 28:39–52

    Article  Google Scholar 

  • Lee S, Kim J-J, Breuil C (2006) Diversity of fungi associated with the mountain pine beetle, Dendroctonus ponderosae and infested lodgepole pines in British Columbia. Fungal Divers 22:91–105

    Google Scholar 

  • Liebhold AM, MacDonald WL, Bergdahl D et al (1995) Invasion by exotic forest pests: a threat to forest ecosystems. For Sci Monogr 30:1–49

    Google Scholar 

  • Liebhold AM, Brockerhoff EG, Garrett LJ et al (2012) Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front Ecol Environ 10:135–143

    Article  Google Scholar 

  • Lieutier F, Yart A, Ye H et al (2004) Variations in growth and virulence of Leptographium wingfieldii Morelet, a fungus associated with the bark beetle Tomicus piniperda L. Ann For Sci 61:45–53

    Article  Google Scholar 

  • Lieutier F, Yart A, Salle A (2009) Stimulation of tree defenses by Ophiostomatoid fungi can explain attack success of bark beetles on conifers. Ann For Sci 66:801

    Article  Google Scholar 

  • Lu M, Wingfield MJ, Gillette NE et al (2010) Complex interactions among host pines and fungi vectored by an invasive bark beetle. New Phytol 187:859–866

    Article  PubMed  Google Scholar 

  • Lu M, Wingfield MJ, Gillette NE et al (2011) Do novel genotypes drive the success of an invasive bark beetle-fungus complex? Implications for potential reinvasion. Ecology 92:2013–2019

    Article  PubMed  Google Scholar 

  • Mahoney E, Milgroom M, Sinclair W (1999) Origin, genetic diversity and population structure of Nectria coccinea var. faginata in North America. Mycologia 91:583–592

    Article  Google Scholar 

  • Mamiya Y (1983) Pathology of the pine wild disease caused by Bursaphelenchus xylophilus. Annu Rev Phytopathol 21:201–220

    Article  CAS  PubMed  Google Scholar 

  • Mamiya Y, Enda N (1972) Transmission of Bursaphelenchus lignicolus (Nematoda: Aphelenchoididae) by Monochamus alternatus (Coleoptera: Cerambycidae). Nematologica 18:159–162

    Article  Google Scholar 

  • Mapondera TS, Burgess T, Matsuki M et al (2012) Identification and molecular phylogenetics of the cryptic species of the Gonipterus scutellatus complex (Coleoptera: Curculionidae: Gonipterini). Aust J Entomol 51:175–188

    Article  Google Scholar 

  • Mason CJ, Couture JJ, Raffa KF (2014) Plant-associated bacteria degrade defense chemicals and reduce their adverse effects on an insect defoliator. Oecologia 175:901–910

    Article  PubMed  Google Scholar 

  • Moser JC, Konrad H, Kirisits T et al (2005) Phoretic mites and nematode associates of Scolytus multistriatus and Scolytus pygmaeus (Coleoptera: Scolytidae) in Austria. Agric For Entomol 7:169–177

    Article  Google Scholar 

  • Moser JC, Konrad H, Blomquist SR et al (2010) Do mites phoretic on elm bark beetles contribute to the transmission of Dutch elm disease? Naturwissenschaften 97:219–227

    Article  CAS  PubMed  Google Scholar 

  • Parbery DG, Rumba KA (1991) Michenera artocreas in elm wood infested with Scolytus multistriatus in Australia. Mycol Res 95:761–762

    Article  Google Scholar 

  • Plante F, Hamelin R, Bernier L (2002) A comparative study of genetic diversity of populations of Nectria galligena and N. coccinea var. faginata in North America. Mycol Res 106:183–193

    Article  CAS  Google Scholar 

  • Ploetz RC, Hulcr J, Wingfield MJ et al (2013) Destructive tree diseases associated with ambrosia and bark beetles: black swan events in tree pathology? Plant Dis 97:856–872

    Article  Google Scholar 

  • Raffa KF, Aukema BH, Bentz BJ et al (2008) Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58:501–517

    Article  Google Scholar 

  • Rice AV, Langor DW (2008) A comparison of heat pulse velocity and lesion lengths for assessing the relative virulence of mountain pine beetle-associated fungi on jack pine. For Pathol 38:257–262

    Google Scholar 

  • Roe AD, Rice AV, Coltman DW et al (2011) Comparative phylogeography, genetic differentiation and contrasting reproductive modes in three fungal symbionts of a multipartite bark beetle symbiosis. Mol Ecol 20:584–600

    Article  PubMed  Google Scholar 

  • Rugman-Jones PF, Hoddle CD, Hoddle MS et al (2013) The lesser of two weevils: molecular-genetics of pest palm weevil populations confirm Rhynchophorus vulneratus (Panzer 1798) as a valid species distinct from R. ferrugineus (Olivier 1790), and reveal the global extent of both. PLoS ONE 8:10

    Article  Google Scholar 

  • Ryan K, Hurley BP (2012) Life history and biology of Sirex noctilio. In: Slippers B, de Groot P, Wingfield MJ (eds) The Sirex woodwasp and its fungal symbiont. Springer, London, pp 15–30

    Chapter  Google Scholar 

  • Santini A, Faccoli M (2014) Dutch elm disease and elm bark beetles: a century of association. iForest 8:126–134

    Article  Google Scholar 

  • Schmidt O (2006) Wood and tree fungi: biology, damage, protection, and use. Springer, Berlin

    Google Scholar 

  • Six DL (2012) Ecological and evolutionary determinants of bark beetle-fungus symbioses. Insects 3:339–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Six DL, Poulsen M, Hansen AK et al (2011) Anthropogenic effects on interaction outcomes: examples from insect-microbial symbioses in forest and savanna ecosystems. Symbiosis 53:101–121

    Article  CAS  Google Scholar 

  • Slippers B, Coutinho TA, Wingfield BD et al (2003) A review of the genus Amylostereum and its association with woodwasps. S Afr J Sci 99:70–74

    Google Scholar 

  • Slippers B, Hurley BP, Wingfield MJ (2015) Sirex woodwasp: a model for evolving management paradigms of invasive forest pests. Annu Rev Entomol 60:601–619

    Article  CAS  PubMed  Google Scholar 

  • Sousa E, Bravo MA, Pires J et al (2001) Bursaphelenchus xylophilus (Nematoda; Aphelenchoididae) associated with Monochamus galloprovincialis (Coleoptera; Cerambycidae) in Portugal. Nematology 3:89–91

    Article  Google Scholar 

  • Sun J, Lu M, Gillette NE et al (2013) Red turpentine beetle: innocuous native becomes invasive tree killer in China. Annu Rev Entomol 58:293–311

    Article  CAS  PubMed  Google Scholar 

  • Talbot PHB (1977) Sirex-Amylostereum-Pinus association. Annu Rev Phytopathol 15:41–54

    Article  Google Scholar 

  • Tarigan M, Roux J, Van Wyk M et al (2011) A new wilt and die-back disease of Acacia mangium associated with Ceratocystis manginecans and C. acaciivora sp. nov. in Indonesia. S Afr J Bot 77:292–304

    Article  Google Scholar 

  • Thompson BM, Bodart J, McEwen C et al (2014) Adaptations for symbiont-mediated external digestion in Sirex noctilio (Hymenoptera: Siricidae). Ann Entomol Soc Am 107:453–460

    Article  Google Scholar 

  • van Wyk M, Adawi AOA, Khan QA et al (2007) Ceratocystis manginecans sp. nov., causal agent of a destructive mango wilt disease in Oman and Pakistan. Fungal Divers 27:213–230

    Google Scholar 

  • Westwood AR (1991) A cost benefit analysis of Manitoba’s integrated Dutch elm disease management program 1975–1990. Proc Entomol Soc Manit 47:44–59

    Google Scholar 

  • Wingfield MJ (1983) Transmission of the pine wood nematode to cut timber and girdled trees. Plant Dis 67:35–37

    Article  Google Scholar 

  • Wingfield MJ (1987a) Fungi associated with the pine wood nematode Bursaphelenchus xylophilus, and cerambycid beetles in Wisconsin. Mycologia 79:325–328

    Article  Google Scholar 

  • Wingfield MJ (1987b) A comparison of the mycophagous and the phytophagous phases of the pine wood nematode. In: Wingfield MJ (ed) Pathogenicity of the pine wood nematode. The American Phytopathological Society, St. Paul, pp 81–90

    Google Scholar 

  • Wingfield MJ, Blanchette RA, Nicholls TH et al (1982) Association of the pine wood nematode with stressed trees in Minnesota, Iowa and Wisconsin. Plant Dis 66:934–937

    Article  Google Scholar 

  • Wingfield MJ, Blanchette RA, Nicholls TH (1984) Is the pine wood nematode and important pathogen in the United States? J Forest 82:232–235

    Google Scholar 

  • Wingfield MJ, Slippers B, Wingfield BD (2010) Novel associations between pathogens, insects and tree species threaten world forests. New Zeal J For Sci 40:S95–S104

    Google Scholar 

  • Wooding AL, Wingfield MJ, Hurley BP et al (2013) Lack of fidelity revealed in an insect-fungal mututalism after invasion. Biol Lett 9:20130342

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaoka Y, Hiratsuka Y, Maruyama PJ (1995) The ability of Ophiostoma clavigerum to kill mature lodgepole pine trees. Eur J Forest Pathol 25:401–404

    Article  Google Scholar 

  • Yan ZL, Sun JH, Don O et al (2005) The red turpentine beetle, Dendroctonus valens LeConte (Scolytidae): an exotic invasive pest of pine in China. Biodivers Conserv 14:1735–1760

    Article  Google Scholar 

Download references

Acknowledgments

The paper had its origin at a workshop on “Drivers, impacts, mechanisms and adaptation in insect invasions” hosted by the DST-NRF Centre of Excellence for Invasion Biology in Stellenbosch, South Africa, in November 2014. Additional financial support was provided by HortGro, the National Research Foundation of South Africa, Stellenbosch University, and SubTrop. We are grateful to the members of the Tree Protection Co-operative Programme (TPCP), the National Research Foundation and the THRIP initiative of the Department of Trade and Industry (DTI), South Africa for providing funding that contributed to research underpinning arguments provided in this review. We thank Prof. Bernard Slippers for useful conversations that contributed to the completion of this paper. We also thank the three anonymous reviewers for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen J. Taerum.

Additional information

Guest editors: Matthew P. Hill, Susana Clusella-Trullas, John S. Terblanche & David M. Richardson / Insect Invasions

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wingfield, M.J., Garnas, J.R., Hajek, A. et al. Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence. Biol Invasions 18, 1045–1056 (2016). https://doi.org/10.1007/s10530-016-1084-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-016-1084-7

Keywords

Navigation