Skip to main content

Advertisement

Log in

Antagonistic effects of large- and small-scale disturbances on exotic tree invasion in a native tussock grassland relict

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

It is generally accepted that disturbances increase community invasibility. Yet the role of disturbance in plant invasions may be less predictable than often assumed, due to the influence of environmental stochasticity and interactions between disturbance regimes. We evaluated the single and interactive effects of prescribed burning (large-scale, infrequent event) and animal diggings (small-scale, frequent events) on the invasion success of Gleditsia triacanthos L. in a tussock grassland relict of the Inland Pampa, Argentina. Tree seedling emergence and survival were monitored over 4 years, after adjusting for propagule pressure through copious seed addition to all disturbance treatments. Burning altered community structure by suppressing tussock grasses and promoting exotic forbs, whereas simulated, armadillo-like diggings had little impact on herbaceous composition. Overall, seedling emergence rather than survival represented the main demographic bottleneck for tree invasion. Tree establishment success varied among seedling cohorts emerged in different climatic years. In a dry year, emergence was only slightly affected by disturbances. In contrast, for two consecutive wet years, initial burning and armadillo-like diggings exerted strong, antagonistic effects on tree recruitment. Whereas fire alone increased recruitment, the simulated burrowing regime prevented seedling emergence in both burned and unburned plots. The latter effect might be explained by reduced soil moisture, and increased seed burial and predation in excavated patches. Thus, the impact of a single, large-scale perturbation promoting woody plant invasion was overridden by a regime of small-scale, frequent disturbances. Our results show that grassland invasibility was contingent on inter-annual climatic variation as well as unexpected interactions between natural and anthropogenic disturbance agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alpert P, Bone E, Holzapfel C (2000) Invasiveness, invasibility and the role of environmental stress in the spread of non-native plants. Persp Plant Ecol Evol Syst 3:52–66

    Article  Google Scholar 

  • Bilenca D, Miñarro F (2004) Identificación de áreas valiosas de pastizal (AVPs) en las Pampas y Campos de Argentina, Uruguay y sur de Brasil. Fundación Vida Silvestre Argentina, Buenos Aires

    Google Scholar 

  • Bond WJ (2008) What limits trees in C4 grasslands and savannas? Ann Rev Ecol Evol Syst 39:641–659

    Article  Google Scholar 

  • Boulant N, Kunstler G, Rambal S, Lepart J (2008) Seed supply, drought, and grazing determine spatio-temporal patterns of recruitment for native and introduced invasive pines in grasslands. Div Distr 14:862–874

    Article  Google Scholar 

  • Burton PJ, Bazzaz FA (1991) Tree seedling emergence on interactive temperature and moisture gradients and in patches of old-field vegetation. Amer J Bot 78:131–149

    Article  Google Scholar 

  • Cabrera AL, Zardini EM (1978) Manual de la flora de los alrededores de Buenos Aires. Acme, Buenos Aires

    Google Scholar 

  • Cannas SA, Marco DE, Páez SA (2003) Modelling biological invasions: species traits, species interactions, and habitat heterogeneity. Math Biosci 183:93–110

    Article  PubMed  Google Scholar 

  • Chaneton EJ, Facelli JM (1991) Disturbance effects on plant community diversity: spatial scales and dominance hierarchies. Vegetatio 93:143–155

    Article  Google Scholar 

  • Chaneton EJ, Perelman SB, Omacini M, León RJC (2002) Grazing, environmental heterogeneity, and alien plant invasions in temperate Pampa grasslands. Biol Inv 4:7–24

    Article  Google Scholar 

  • Crawley MJ (1989) Chance and timing in biological invasions. In: Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (eds) Biological invasions: a global perspective. Wiley, Chichester, pp 407–424

    Google Scholar 

  • Crawley MJ (1993) GLIM for ecologists. Blackwell, Oxford

    Google Scholar 

  • D’Antonio CM (1993) Mechanisms controlling invasion of coastal plant communities by the alien succulent Carpobrotus edulis. Ecology 74:83–95

    Article  Google Scholar 

  • D’Antonio CM, Dudley TL, Mack M (1999) Disturbance and biological invasions: direct effects and feedbacks. In: Walker LR (ed) Ecosystems of disturbed ground. Ecosystems of the world 16. Elsevier, Amsterdam, pp 413–452

    Google Scholar 

  • Davis MA, Pelsor M (2001) Experimental support for a resource-based mechanistic model of invasibility. Ecol Lett 4:421–428

    Article  Google Scholar 

  • Davis MA, Wrage KJ, Reich PB (1998) Competition between tree seedlings and herbaceous vegetation: support for a theory of resource supply and demand. J Ecol 86:652–661

    Article  Google Scholar 

  • Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528–534

    Article  Google Scholar 

  • De Blois S, Brisson J, Bouchard A (2004) Herbaceous covers to control tree invasion in rights-of-way: ecological concepts and applications. Environ Manag 5:606–619

    Google Scholar 

  • Dickie IA, Schnitzer SA, Reich PB, Hobbie SE (2007) Is oak establishment in old-fields and savanna openings context dependent? J Ecol 95:309–320

    Article  Google Scholar 

  • Elton CS (1958) The ecology of invasions by animals and plants. Methuen, London

    Google Scholar 

  • Eviner VE, Chapin FS III (2003) Gopher–plant–fungal interactions affect establishment of an invasive grass. Ecology 84:120–128

    Article  Google Scholar 

  • Facelli JM, León RJC (1986) El establecimiento espontáneo de árboles en la Pampa- un enfoque experimental. Phytocoenologia 14:263–274

    Google Scholar 

  • Ghersa CM, León RJC (1999) Successional changes in agroecosystems of the Rolling Pampa. In: Walker LR (ed) Ecosystems of disturbed ground. Ecosystems of the World 16. Elsevier, Amsterdam, pp 487–502

    Google Scholar 

  • Ghersa CM, de la Fuente E, Suarez S, León RJC (2002) Woody species invasion in the Rolling Pampa grasslands, Argentina. Agric Ecosys Environ 88:271–278

    Article  Google Scholar 

  • Grime JP (2001) Plant strategies, vegetation processes, and ecosystem properties, 2nd edn. Wiley, Chichester

    Google Scholar 

  • Hobbs RJ, Huenneke LF (1992) Disturbance, diversity, and invasion - implications for conservation. Cons Biol 6:324–337

    Article  Google Scholar 

  • Hudson WH (1918) Far away and long ago—a childhood in Argentina. Eland, London

    Google Scholar 

  • Kotanen PM (1997) Effects of experimental soil disturbance on revegetation by natives and exotics on coastal Californian meadows. J Appl Ecol 34:631–644

    Article  Google Scholar 

  • Laterra P, Vignolo OR, Linares MP, Giaquinta A, Maceira N (2003) Cumulative effects of fire on tussock pampa grasslands. J Veg Sci 14:43–54

    Article  Google Scholar 

  • Levine JM, Adler PB, Yelenik SG (2004) A meta-analysis biotic resistance to exotic plant invasions. Ecol Lett 7:975–989

    Article  Google Scholar 

  • Lockwood J, Hoopes MF, Marchetti MP (2007) Invasion Ecology. Blackwell, Oxford

    Google Scholar 

  • Lonsdale WM (1999) Global patterns of plant invasion and the concept of invasibility. Ecology 80:1522–1536

    Article  Google Scholar 

  • MacDougall AS, Wilson S (2007) Herbivory limits recruitment in an old-field seed addition experiment. Ecology 88:1105–1111

    Article  PubMed  Google Scholar 

  • Machera M (2006) La invasión de pastizales por especies exóticas: el papel de disturbios de diferente escala espacial. PhD Dissertation, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires

  • Marco DE, Páez SA (2000) Invasion of Gleditsia triacanthos in Lithraea ternifolia forests of central Argentina. Environ Manag 26:409–419

    Article  Google Scholar 

  • Maron JL, Vilà M (2001) When do herbivores affect plant invasion? Evidence for the natural enemies and biotic resistance hypotheses. Oikos 95:361–373

    Article  Google Scholar 

  • Mazía CN, Chaneton EJ, Ghersa CM, León RJC (2001) Limits to tree species invasion in pampean grassland and forest plant communities. Oecologia 128:594–602

    Article  Google Scholar 

  • McIntyre S, Lavorel S (1994) How environmental and disturbance factors influence species composition in temperate Australian grasslands. J Veg Sci 5:373–384

    Article  Google Scholar 

  • Mitchell CE, Agrawal AA, Bever JD, Gilbert GS, Hufbauer RA et al (2006) Biotic interactions and plant invasions. Ecol Lett 9:726–740

    Article  PubMed  Google Scholar 

  • Murillo N, Laterra P, Monterubbianesi G (2007) Post-dispersal granivory in a tall-tussock grassland: A positive feedback mechanism of dominance? J Veg Sci 18:799–806

    Article  Google Scholar 

  • Nuñez M, Simberloff D, Relva MA (2008) Seed predation as a barrier to alien conifer invasions. Biol Inv 10:1389–1398

    Article  Google Scholar 

  • O’Connor TG (1995) Acacia karroo invasion of grassland: environmental and biotic effects influencing seedling emergence and establishment. Oecologia 103:214–223

    Article  Google Scholar 

  • Ortega Y, Pearson D (2005) Weak vs. strong invaders of natural plant communities: assessing invasibility and impact. Ecol Appl 15:651–661

    Article  Google Scholar 

  • Parodi LR (1947) Vegetación de la Argentina. La estepa pampeana. GAEA 8:143–207

    Google Scholar 

  • Petraitis PS, Latham RE (1999) The importance of scale in testing the origins of alternative community states. Ecology 80:421–442

    Article  Google Scholar 

  • Sankaran M, Ratnam J, Haram NP (2006) Tree-grass coexistence in savannas revisited–insights from an examination of assumptions and mechanisms invoked in existing models. Ecol Lett 7:480–490

    Article  Google Scholar 

  • Schnabel A, Wendel JF (1998) Cladistic biogeography of Gleditsia (Leguminosae) based on NDHF and RPL16 chloroplast gene sequences. Amer J Bot 85:1753–1765

    Article  CAS  Google Scholar 

  • Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Ann Rev Ecol Syst 28:517–544

    Article  Google Scholar 

  • Setterfield SA (2002) Seedling establishment in an Australian tropical savanna: effects of seed supply, soil disturbance and fire. J Appl Ecol 39:949–959

    Article  Google Scholar 

  • Shea K, Cheeson PS (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176

    Article  Google Scholar 

  • Simberloff D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81–102

    Article  Google Scholar 

  • Soriano A (1992) Río de la Plata grasslands. In: Coupland RT (ed) Natural grasslands: introduction and western hemisphere. ecosystems of the world 8A. Elsevier, Amsterdam, pp 367–407

    Google Scholar 

  • StatSoft, Inc. (1999) STATISTICA for Windows. Computer program manual. Tulsa

  • Svensson JR, Lindegarth M, Pavia H (2009) Equal rates of disturbance cause different patterns of diversity. Ecology 90:496–505

    Article  PubMed  Google Scholar 

  • Thomsen MA, D’Antonio CM, Sutle KB, Sousa WP (2006) Ecological resistance, seed density and their interactions determine patterns of invasion in a California coastal grassland. Ecol Lett 9:160–170

    Article  PubMed  Google Scholar 

  • Von Holle B, Simberloff D (2005) Ecological resistance to biological invasion overwhelmed by propagule pressure. Ecology 86:3212–3218

    Article  Google Scholar 

  • White PS, Pickett STA (1985) Natural disturbance and patch dynamics: an introduction. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic Press, New York, pp 3–13

    Google Scholar 

  • White EM, Wilson JC, Clarke AR (2006) Biotic indirect effects: a neglected concept in invasion biology. Diversity Distrib 12:443–455

    Article  Google Scholar 

  • Williamson M (1996) Biological invasions. Chapman & Hall, London

    Google Scholar 

  • Xiong S, Nilsson C (1999) The effect of plant litter on vegetation: a meta-analysis. J Ecol 87:984–994

    Article  Google Scholar 

Download references

Acknowledgments

We thank M. L. Bolkovic, H. Trebino, P. Tognetti, M. Rabadán and D. Ferraro for field assistance, and the staff at Estancia “San Claudio” and Administración de Campos (UBA) for logistic support. This study was funded by Agencia Nacional de Promoción Científica y Tecnológica, Consejo Nacional de Investigaciones Científicas y Técnicas, and Universidad de Buenos Aires. The comments from one anonymous reviewer greatly helped to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Noemí Mazía.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazía, C.N., Chaneton, E.J., Machera, M. et al. Antagonistic effects of large- and small-scale disturbances on exotic tree invasion in a native tussock grassland relict. Biol Invasions 12, 3109–3122 (2010). https://doi.org/10.1007/s10530-010-9702-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-010-9702-2

Keywords

Navigation