Skip to main content
Log in

Isolation and characterization of bio-prospecting gut strains Bacillus safensis CGK192 and Bacillus australimaris CGK221 for plastic (HDPE) degradation

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

The present work reports the application of novel gut strains Bacillus safensis CGK192 (Accession No. OM658336) and Bacillus australimaris CGK221 (Accession No. OM658338) in the biological degradation of synthetic polymer i.e., high-density polyethylene (HDPE). The biodegradation assay based on polymer weight loss was conducted under laboratory conditions for a period of 90 days along with regular evaluation of bacterial biomass in terms of total protein content and viable cells (CFU/cm2). Notably, both strains achieved significant weight reduction for HDPE films without any physical or chemical pretreatment in comparison to control. Hydrophobicity and biosurfactant characterization were also done in order to assess strains ability to form bacterial biofilm over the polymer surface. The post-degradation characterization of HDPE was also performed to confirm degradation using analytical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Field emission scanning electronic microscopy (FE-SEM) coupled with energy dispersive X-ray (EDX), and Gas chromatography–mass spectrometry (GC–MS). Interestingly strain CGK221 was found to be more efficient in forming biofilm over polymer surface as indicated by lower half-life (i.e., 0.00032 day−1) and higher carbonyl index in comparison to strain CGK192. The findings reflect the ability of our strains to develop biofilm and introduce an oxygenic functional group into the polymer surface, thereby making it more susceptible to degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data are given in the manuscript itself.

References

  • Abrusci C, Pablos JL, Marín I et al (2013) Comparative effect of metal stearates as pro-oxidant additives on bacterial biodegradation of thermal- and photo-degraded low density polyethylene mulching films. Int Biodeterior Biodegrad 83:25–32

    Article  CAS  Google Scholar 

  • Albertsson AC, Erlandsson B, Hakkarainen M, Karlsson S (1998) Molecular weight changes and polymeric matrix changes correlated with the formation of degradation products in biodegraded polyethylene. J Environ Polym Degrad 6:187–195

    Article  CAS  Google Scholar 

  • Aliko V, Beqiraj EG, Qirjo M et al (2022) Plastic invasion tolling: first evaluation of microplastics in water and two crab species from the nature reserve lagoonary complex of Kune-Vain, Albania. Sci Total Environ 849:157799

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Zeferino JC, Beltrán-Villavicencio M, Vázquez-Morillas A (2015) Degradation of plastics in seawater in laboratory. Open J Polym Chem 5:55

    Article  CAS  Google Scholar 

  • Amobonye A, Bhagwat P, Singh S, Pillai S (2021) Plastic biodegradation: frontline microbes and their enzymes. Sci Total Environ 759:143536

    Article  CAS  PubMed  Google Scholar 

  • Arkatkar A, Juwarkar AA, Bhaduri S et al (2010) Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface. Int Biodeterior Biodegrad 64:530–536

    Article  CAS  Google Scholar 

  • Atanasova N, Stoitsova S, Paunova-Krasteva T, Kambourova M (2021) Plastic degradation by extremophilic bacteria. Int J Mol Sci 22:5610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awasthi S, Srivastava P, Singh P et al (2017) Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001. 3 Biotech 7:1–10

    Google Scholar 

  • Balasubramanian V, Natarajan K, Hemambika B et al (2010) High density polyethylene (HDPE) -degrading potential bacteria from marine ecosystem of Gulf of Mannar, India. Lett Appl Microbiol 51:205–211

    CAS  PubMed  Google Scholar 

  • Barale SS, Ghane SG, Sonawane KD (2022) Purification and characterization of antibacterial surfactin isoforms produced by Bacillus velezensis SK. AMB Express 12:1–20

    Article  Google Scholar 

  • Behera SS, Ray RC (2021) Bioprospecting of cowdung microflora for sustainable agricultural, biotechnological and environmental applications. Curr Res Microb Sci 2:100018

    CAS  PubMed  Google Scholar 

  • Bher A, Mayekar PC, Auras RA, Schvezov CE (2022) Biodegradation of biodegradable polymers in mesophilic aerobic environments. Int J Mol Sci 23:12165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonhomme S, Cuer A, Delort AM et al (2003) Environmental biodegradation of polyethylene. Polym Degrad Stab 81:441–452

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chamas A, Moon H, Zheng J et al (2020) Degradation rates of plastics in the environment. ACS Sustain Chem Eng 8:3494–3511

    Article  CAS  Google Scholar 

  • Chaudhary AK, Vijayakumar RP (2020) Effect of chemical treatment on biological degradation of high-density polyethylene (HDPE). Environ Dev Sustain 22:1093–1104

    Article  Google Scholar 

  • Coenye T, Vandamme P (2003) Intragenomic heterogeneity between multiple 16S ribosomal RNA operons in sequenced bacterial genomes. FEMS Microbiol Lett 228:45–49

    Article  CAS  PubMed  Google Scholar 

  • Cooper DG, Goldenberg BG (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das MP, Kumar S (2015) An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. 3 Biotech 5:81–86

    Article  PubMed  Google Scholar 

  • Das P, Mukherjee S, Sen R (2008) Antimicrobial potential of a lipopeptide biosurfactant derived from a marine Bacillus circulans. J Appl Microbiol 104:1675–1684

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira DWF, França ÍWL, Félix AKN et al (2013) Kinetic study of biosurfactant production by Bacillus subtilis LAMI005 grown in clarified cashew apple juice. Colloids Surf B 101:34–43

    Article  Google Scholar 

  • Devi RS, Ramya R, Kannan K et al (2019) Investigation of biodegradation potentials of high density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India. Mar Pollut Bull 138:549–560

    Article  Google Scholar 

  • Diez MC, Llafquen C, Fincheira P et al (2022) Biosurfactant production by Bacillus amyloliquefaciens C11 and Streptomyces lavendulae C27 isolated from a biopurification system for environmental applications. Microorganisms 10:1892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elazzazy AM, Abdelmoneim TS, Almaghrabi OA (2015) Isolation and characterization of biosurfactant production under extreme environmental conditions by alkali-halo-thermophilic bacteria from Saudi Arabia. Saudi J Biol Sci 22:466–475

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed MT, Rabie GH, Hamed EA (2021) Biodegradation of low-density polyethylene (LDPE) using the mixed culture of Aspergillus carbonarius and A. fumigates. Environ Dev Sustain 23:14556–14584

    Article  Google Scholar 

  • Ferreira A, Vecino X, Ferreira D et al (2017) Novel cosmetic formulations containing a biosurfactant from Lactobacillus paracasei. Colloids Surf B 155:522–529

    Article  CAS  Google Scholar 

  • Ghasemi A, Moosavi-Nasab M, Setoodeh P et al (2019) Biosurfactant production by lactic acid bacterium Pediococcus dextrinicus SHU1593 grown on different carbon sources: strain screening followed by product characterization. Sci Rep 9:1–12

    Article  Google Scholar 

  • Gilbert M (2017) Plastics materials: Introduction and historical development. In: Brydson’s plastics materials. Butterworth-Heinemann, pp 1–18

  • Gupta KK, Devi D (2019) Biodegradation of low density polyethylene by selected Bacillus sp. Gazi Univ J Sci 32:802–813

    Article  Google Scholar 

  • Gupta KK, Devi D (2020) Biofilm mediated degradation of commercially available LDPE films by bacterial strains isolated from partially degraded plastic. Remediation 30:39–47

    Article  CAS  Google Scholar 

  • Gupta KK, Sharma KK, Chandra H (2022) Micrococcus luteus strain CGK112 isolated from cow dung demonstrated efficient biofilm-forming ability and degradation potential toward high-density polyethylene (HDPE). Arch Microbiol 204:1–13

    Article  Google Scholar 

  • Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Hahladakis JN (2020) Delineating the global plastic marine litter challenge: clarifying the misconceptions. Environ Monit Assess 192:1–11

    Article  Google Scholar 

  • Han YN, Wei M, Han F et al (2020) Greater biofilm formation and increased biodegradation of polyethylene film by a microbial consortium of Arthrobacter sp. and Streptomyces sp. Microorganisms 8:1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harshvardhan K, Jha B (2013) Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Mar Pollut Bull 77:100–106

    Article  CAS  PubMed  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA et al (1994) Bergey’s manual of determinative bacteriology. William and Wilkins Press, Baltimore, pp 786–788

    Google Scholar 

  • Huerta Lwanga E, Gertsen H, Gooren H et al (2016) Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ Sci Technol 50:2685–2691

    Article  CAS  PubMed  Google Scholar 

  • Janek T, Gudiña EJ, Połomska X et al (2021) Sustainable surfactin production by Bacillus subtilis using crude glycerol from different wastes. Molecules 26:3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JW, Kang JS, Choi J, Park JW (2020) Chronic toxicity of endocrine disrupting chemicals used in plastic products in Korean resident species: implications for aquatic ecological risk assessment. Ecotoxicol Environ Saf 192:110309

    Article  CAS  PubMed  Google Scholar 

  • Karlsson S, Ljungquist O, Albertsson AC (1988) Biodegradation of polyethylene and the influence of surfactants. Polym Degrad Stab 21:237–250

    Article  CAS  Google Scholar 

  • Kavitha R, Bhuvaneswari V (2021). Assessment of polyethylene degradation by biosurfactant producing ligninolytic bacterium. Biodegradation 1–19

  • Kehinde O, Ramonu OJ, Babaremu KO, Justin LD (2020) Plastic wastes: environmental hazard and instrument for wealth creation in Nigeria. Heliyon 6:e05131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khandare SD, Chaudhary DR, Jha B (2021) Bioremediation of polyvinyl chloride (PVC) films by marine bacteria. Mar Pollut Bull 169:112566. https://doi.org/10.1016/j.marpolbul.2021.112566

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Hatha AAM, Christi KS (2007) Diversity and effectiveness of tropical mangrove soil microflora on the degradation of polythene carry bags. Rev Biol Trop 55:777–786

    Article  PubMed  Google Scholar 

  • Kumar R, Verma A, Shome A et al (2021) Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions. Sustainability 13:9963

    Article  CAS  Google Scholar 

  • Kumari A, Chaudhary DR, Jha B (2019) Destabilization of polyethylene and polyvinylchloride structure by marine bacterial strain. Environ Sci Pollut Res 26:1507–1516

    Article  CAS  Google Scholar 

  • Kundungal H, Gangarapu M, Sarangapani S et al (2019) Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). Environ Sci Pollut Res 26:18509–18519

    Article  CAS  Google Scholar 

  • Kyaw BM, Champakalakshmi R, Sakharkar MK et al (2012) Biodegradation of low density polythene (LDPE) by Pseudomonas species. Indian J Microbiol 52:411–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahive E, Walton A, Horton AA et al (2019) Microplastic particles reduce reproduction in the terrestrial worm Enchytraeus crypticus in a soil exposure. Environ Pollut 255:113174

    Article  CAS  PubMed  Google Scholar 

  • Lee B, Pometto AL III, Fratzke A, Bailey TB Jr (1991) Biodegradation of degradable plastic polyethylene by Phanerochaete and Streptomyces species. Appl Environ Microbiol 57:678–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mukhuba M, Roopnarain A, Moeletsi ME, Adeleke R (2020) Metagenomic insights into the microbial community and biogas production pattern during anaerobic digestion of cow dung and mixed food waste. J Chem Technol Biotechnol 95:151–162

    Article  CAS  Google Scholar 

  • Nag M, Lahiri D, Dutta B et al (2021) Biodegradation of used polyethylene bags by a new marine strain of Alcaligenes faecalis LNDR-1. Environ Sci Pollut Res 28:41365–41379

    Article  CAS  Google Scholar 

  • Nand S, Sahu S, Abraham J (2010) Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. J Appl Sci Environ Manag 14:57–60

    Google Scholar 

  • Nielsen TD, Hasselbalch J, Holmberg K, Stripple J (2020) Politics and the plastic crisis: a review throughout the plastic life cycle. Wiley Interdiscip Rev Energy Environ 9:e360

    CAS  Google Scholar 

  • Nnaji CF, Ogu EC, Akpor OB (2021) Biosurfactants as facilitators in biodegradation of low-density polyethylene (LDPE). In: IOP Conference Series: Materials Science and Engineering. IOP Publishing. 1107:012135

  • Ojha N, Pradhan N, Singh S et al (2017) Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci Rep 7:39515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira J, Belchior A, da Silva VD et al (2020) Marine environmental plastic pollution: mitigation by microorganism degradation and recycling valorization. Front Mar Sci 7:567126

    Article  Google Scholar 

  • Plastics - the Facts (2022). https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022/

  • Prasad SG, Lal C, Sahu KR, Saha A, De U (2021) Spectroscopic investigation of degradation reaction mechanism in γ-rays irradiation of HDPE. Biointerface Res Appl Chem 11:9405–9419

    CAS  Google Scholar 

  • Rosenberg M, Gutnic D, Rosenberg E (1980) Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. FEMS Microbiol Lett 9:29–33

    Article  CAS  Google Scholar 

  • Roy PK, Titus S, Surekha P et al (2008) Degradation of abiotically aged LDPE films containing pro-oxidant by bacterial consortium. Polym Degrad Stab 93:1917–1922

    Article  CAS  Google Scholar 

  • Sajjad M, Huang Q, Khan S et al (2022) Microplastics in the soil environment: a critical review. Environ Technol Innov 27:102408

    Article  CAS  Google Scholar 

  • Samanta S, Datta D, Tiwari ON, Halder G (2022) Microbial enhancement of biodegradability inoculating Bacillus tropicus and Staphylococcus cohnii onto LDPE/starch blended films. Biomass Convers Biorefin 1–14

  • Sambrook J, and Russell DW (2006) Purification of nucleic acids by extraction with phenol: chloroform. Cold Spring Harbor Protocols pdb-prot4455

  • Selonen S, Dolar A, Kokalj AJ, Skalar T et al (2020) Exploring the impacts of plastics in soil–the effects of polyester textile fibers on soil invertebrates. Sci Total Environ 700:134451

    Article  CAS  PubMed  Google Scholar 

  • Shahnawaz M, Sangale MK, Ade AB (2016) Bacteria-based polythene degradation products: GC-MS analysis and toxicity testing. Environ Sci Pollut Res 23:10733–10741

    Article  CAS  Google Scholar 

  • Shaibur MR, Husain H, Arpon SH (2021) Utilization of cow dung residues of biogas plant for sustainable development of a rural community. Curr Res Environ Sustain 3:100026

    Article  Google Scholar 

  • Shao H, Chen M, Fei X et al (2019) Complete genome sequence and characterization of a polyethylene biodegradation strain, Streptomyces albogriseolus LBX-2. Microorganisms 7:379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma R, Singh J, Verma N (2018) Production, characterization and environmental applications of biosurfactants from Bacillus amyloliquefaciens and Bacillus subtilis. Biocatal Agric Biotechnol 16:132–139

    Article  Google Scholar 

  • Sivan A, Szanto M, Pavlov V (2006) Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl Microbiol Biotechnol 72:346–352

    Article  CAS  PubMed  Google Scholar 

  • Skariyachan S, Patil AA, Shankar A et al (2018) Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants. Polym Degrad Stab 149:52–68

    Article  CAS  Google Scholar 

  • Sohn YJ, Kim HT, Baritugo KA, Jo SY et al (2020) Recent advances in sustainable plastic upcycling and biopolymers. Biotechnol J 15:1900489

    Article  CAS  Google Scholar 

  • Sudhakar M, Doble M, Murthy PS, Venkatesan R (2008) Marine microbe-mediated biodegradation of low- and high-density polyethylenes. Int Biodeterior Biodegrad 61:203–213

    Article  CAS  Google Scholar 

  • Taghavi N, Singhal N, Zhuang WQ, Baroutian S (2021) Degradation of plastic waste using stimulated and naturally occurring microbial strains. Chemosphere 263:127975

    Article  CAS  PubMed  Google Scholar 

  • Thakur S, Verma A, Sharma B et al (2018) Recent developments in recycling of polystyrene based plastics. Curr Opin Green Sustain Chem 13:32–38

    Article  Google Scholar 

  • Urbanek AK, Rymowicz W, Mirończuk AM (2018) Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Appl Microbiol Biotechnol 102:7669–7678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dyke MI, Lee H, Trevors JT (1991) Applications of microbial surfactants. Biotechnol Adv 9:241–252

    Article  PubMed  Google Scholar 

  • Vimala PP, Mathew L (2016) Biodegradation of polyethylene using Bacillus subtilis. Procedia Technol 24:232–239

    Article  Google Scholar 

  • Wu Z, Shi W, Valencak TG, Zhang Y, Liu G, Ren D (2023). Biodegradation of conventional plastics: candidate organisms and potential mechanisms. Sci Total Environ 163908

  • Yuan J, Ma J, Sun Y et al (2020) Microbial degradation and other environmental aspects of microplastics/plastics. Sci Total Environ 715:136968

    Article  CAS  PubMed  Google Scholar 

  • Yuan Z, Nag R, Cummins E (2022) Ranking of potential hazards from microplastics polymers in the marine environment. J Hazard Mater 429:128399

    Article  CAS  PubMed  Google Scholar 

  • Zaki MF, Elshaer YH, Taha DH (2017) The alterations in high density polyethylene properties with gamma irradiation. Radiat Phys Chem 139:90–96

    Article  CAS  Google Scholar 

  • Zhang H, Lu Y, Wu H et al (2022) Effect of an Acinetobacter pittobacter on low-density polyethylene. Environ Sci Pollut Res 9:1–10

    Google Scholar 

  • Zuker M, Stiegler P (1981) Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res 9:133–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to perform the analysis and to collect experimental data under the supervision of KKG. The idea of performing this research and designing of methodology came from KKG and KKS. The draft manuscript was prepared by KKS and HP with the assistance of KKG. Manuscript was critically reviewed and edited by KKG. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kartikey Kumar Gupta.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, K.K., Panwar, H. & Gupta, K.K. Isolation and characterization of bio-prospecting gut strains Bacillus safensis CGK192 and Bacillus australimaris CGK221 for plastic (HDPE) degradation. Biotechnol Lett (2024). https://doi.org/10.1007/s10529-024-03486-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10529-024-03486-z

Keywords

Navigation