Skip to main content

Advertisement

Log in

Toxicity and preventive approaches of Fusarium derived mycotoxins using lactic acid bacteria: state of the art

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Mycotoxin contamination of food and feed is a serious food safety issue and causes acute and chronic diseases in humans and livestock. Climatic and agronomic changes helps in the proliferation of fungal growth and mycotoxin production in food commodities. Mycotoxin contamination has attracted global attention due to its wide range of toxicity to humans and animals. However, physical and chemical management approaches in practice are unsafe for well-being due to their health-hazardous nature. Various antibiotics and preservatives are in use to reduce the microbial load and improve the shelf life of food products. In addition, the use of antibiotic growth promotors in livestock production may increase the risk of antimicrobial resistance, which is a global health concern. Due to their many uses, probiotics are helpful microbes that have a significant impact on food and nutrition. Furthermore, the probiotic potential of lactic acid bacteria (LAB) is employed in various food and feed preparations to neutralize mycotoxins, antimicrobial activities, balance the gut microbiome, and various immunomodulatory activities in both humans and livestock. In addition, LAB produces various antimicrobials, flavouring agents, peptides, and proteins linked to various food and health care applications. The LAB-based processes for mycotoxin management are more effective, eco-friendly, and low-cost than physical and chemical approaches. The toxicity, novel preventive measures, binding nature, and molecular mechanisms of mycotoxins' detoxification using LAB have been highlighted in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not Applicable.

Code availability

Not applicable.

References

  • Abbès S, Jalila Ben SA, Hakimeh S (2012) Interaction of Lactobacillus plantarum MON03 with Tunisian Montmorillonite clay and ability of the composite to immobilize Zearalenone in vitro and counteract immunotoxicity in vivo. Immunopharmacol Immunotoxicol 34:944–950

    Article  CAS  PubMed  Google Scholar 

  • Abdellatef AA, Khalil AA (2016) Ameliorated effects of Lactobacillus delbrueckii subsp. lactis DSM 20076 and Pediococcus acidilactici NNRL B-5627 on Fumonisin B1-induced Hepatotoxicity and Nephrotoxicity in rats. Asian J Pharm Sci 11:326–336

    Article  Google Scholar 

  • Adebo OA, Kayitesi E, Njobeh PB (2019) Reduction of mycotoxins during fermentation of whole grain sorghum to whole grain ting (a southern African food). Toxins 11:180

    Article  CAS  PubMed Central  Google Scholar 

  • Ahmadova A, Todorov SD, Hadji-Sfaxi I et al (2013) Antimicrobial and antifungal activities of Lactobacillus curvatus strain isolated from homemade Azerbaijani cheese. Anaerobe 20:42–49

    Article  CAS  PubMed  Google Scholar 

  • Bakker S, Macheka, L. Eunice L et al (2021) Food-system interventions with climate change and nutrition co-benefits; A literature review. Wageningen Centre for Development Innovation, Wageningen University & Research. Report WCDI21-153

  • Balendres MAO, Karlovsky P, Cumagun CJR (2019) Mycotoxigenic fungi and mycotoxins in agricultural crop commodities in the Philippines: a review. Foods 8:1–12

    Article  CAS  Google Scholar 

  • Belgacem H, Venditti M, Ben Salah-Abbès J et al (2022) Potential protective effect of lactic acid bacteria against zearalenone causing reprotoxicity in male mice. Toxicon 209:56–65

    Article  CAS  PubMed  Google Scholar 

  • Ben Salah-Abbès J, Mannai M, Belgacem H et al (2021) Efficacy of lactic acid bacteria supplementation against Fusarium graminearum growth in vitro and inhibition of Zearalenone causing inflammation and oxidative stress in vivo. Toxicon 30:115–122

    Article  CAS  Google Scholar 

  • Ben Taheur F, Kouidhi B, Al Qurashi YMA et al (2019) Review: biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 160:12–22

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Pan S, Feng N et al (2019) Zearalenone inhibits T cell chemotaxis by inhibiting cell adhesion and migration-related proteins. Ecotoxicol Environ Saf 175:263–271

    Article  CAS  PubMed  Google Scholar 

  • Capcarova M, Petruska P, Zbynovska K et al (2015) Changes in antioxidant status of porcine ovarian granulosa cells after quercetin and T-2 toxin treatment. J Environ Sci Health 50:201–206

    Article  CAS  Google Scholar 

  • Chen XX, Yang CW, Huang LB et al (2015) Zearalenone altered the serum hormones, morphologic and apoptotic measurements of genital organs in post-weaning gilts. Asian-Australasian J Animal Scie 28:171–179

    Article  CAS  Google Scholar 

  • Cheng G, Liu C, Wang X (2014) Structure-function analysis of porcine cytochrome P450 3A29 in the hydroxylation of T-2 toxin as revealed by docking and mutagenesis studies. PLoS ONE 9:e106769

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chlebicz A, ´Sli˙zewska K, (2020) In vitro detoxification of aflatoxin b1, deoxynivalenol, fumonisins, t-2 toxin and zearalenone by probiotic bacteria from genus Lactobacillus and Saccharomyces cerevisiae yeast. ProbiotAntimicbProtn 12:289–301

    CAS  Google Scholar 

  • Colombo M, Nathália PAC, Svetoslav DT et al (2018) Beneficial properties of lactic acid bacteria naturally present in dairy production. BMC Microbiol 18:219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dalié DKD, Deschamps AM, Richard-Forget F (2010) Lactic acid bacteria - Potential for control of mould growth and mycotoxins: a review. Food Control 21:370–380

    Article  CAS  Google Scholar 

  • De Oliveira RA, Andrea K, Carlos EVR et al (2018) Challenges and opportunities in lactic acid bioprocess design—from economic to production aspects. BiochemEng J 133:219–239

    Google Scholar 

  • Deepthi BV, Rao KP, Chennapa G et al (2016) Antifungal attributes of Lactobacillus plantarum MYS6 against fumonisin producing Fusarium proliferatum associated with poultry feeds. PLoS ONE 11:1–22

    Article  CAS  Google Scholar 

  • Deepthi BV, Somashekaraiah R, Poornachandra Rao K et al (2017) Lactobacillus plantarumMYS6 ameliorates fumonisin b1-induced hepatorenal damage in broilers. Front Microbiol 8:2317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • EFSA (2011) Panel on Contaminants in the Food Chain (CONTAM); Scientific Opinion on risks for animal and public health related to the presence of T-2 and HT-2 toxin in food and feed. EFSA J 9:2481

    Article  CAS  Google Scholar 

  • Egbuta MA, Mwanza M, Babalola OO (2017) Health risks associated with exposure to filamentous fungi. Int J Environ Res Public Health 14:719. https://doi.org/10.3390/ijerph14070719

    Article  CAS  PubMed Central  Google Scholar 

  • El-Nekeety AA, El-Kady AA, Soliman MS et al (2009) Protective effect of Aquilegia vulgaris (L.) against lead acetate-induced oxidative stress in rats. Food ChemToxicol 47:2209–2215

    Article  CAS  Google Scholar 

  • El-Sharkaway SH, Selim MI, Afifi MS et al (1991) Microbial transformation of zearalenone to a zearalenone sulfate. Appl Environ Microbiol 57:549–552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Commission E (2013) Commission Recommendation No 2013/165/EU of 27 March 2013 on the presence of T-2 and HT-2 toxin in cereals and cereal products. Off J Eur Union 91:12–15

    Google Scholar 

  • European Commission (EC) Regulation no. 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Off J EU L364:5 (2006)

  • Franco TS, Garcia S, Hirooka EY (2011) Lactic acid bacteria in the inhibition of Fusarium graminearum and deoxynivalenol detoxification. J ApplMicrobiol 111:739–748

    CAS  Google Scholar 

  • Froquet R, Sibiril Y, Parent-Massin D (2001) Trichothecene toxicity on human megakaryocyte progenitors (CFU-MK). Hum ExpToxicol 20:84–89

    Article  CAS  Google Scholar 

  • Garmendia G, Pattarino L, Negrín C et al (2018) Species composition, toxigenic potential and aggressiveness of Fusarium isolates causing head blight of barley in Uruguay. Food Microbiol 76:426–433

    Article  CAS  PubMed  Google Scholar 

  • Gouze ME, Laffitte J, Pinton P et al (2007) Effect of subacute oral doses of nivalenol on immune and metabolic defence systems in mice. Vet Res 38:635–646

    Article  CAS  PubMed  Google Scholar 

  • Gregirchak N, Stabnikova O, Stabnikov V (2020) Application of lactic acid bacteria for coating of wheat bread to protect it from microbial spoilage. Plant Foods Hum Nutr 75:223–229

    Article  CAS  PubMed  Google Scholar 

  • Hayek S, Ibrahim S (2013) Current limitations and challenges with lactic acid bacteria: a review. Food and NutrSci 4:73–87

    CAS  Google Scholar 

  • Heinl S, Hartinger D, Thamhesl M et al (2010) Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes. J Biotechnol 145:120–129

    Article  CAS  PubMed  Google Scholar 

  • Howard PC, Eppley RM, Stack ME et al (2001) Fumonisin b1 carcinogenicity in a two-year feeding study using F344 rats and B6C3F1 mice. Environ Health Perspect 109:277–282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hueza IM, Raspantini PCF, Raspantini LER et al (2014) Zearalenone, an estrogenic mycotoxin, is an immunotoxic compound. Toxins 6:1080–1095

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Husain A, Hassan Z, El-mabrok ASW et al (2017) In vitro efficacy of lactic acid bacteria with antifungal activity against Fusariumsp. CID124-CS isolate from chilli seeds. Int J SciTechnol Res 6:128–132

    Google Scholar 

  • IARC (2019) Monographs on the Evaluation of Carcinogenic Risks to Humans. Available at https://monographs.iarc.fr/wp‐content/uploads/2018/06/mono82

  • Jian WH (2015) Detoxification of deoxynivalenol by a soil bacterium Devosia mutans 17-2-E-8. Dissertation. University Guelph, Guelph

    Google Scholar 

  • John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. App Microbiol Biotechnol 74:524–534

    Article  CAS  Google Scholar 

  • Juodeikiene G, Bartkiene E, Cernauskas D et al (2018) Antifungal activity of lactic acid bacteria and their application for Fusarium mycotoxin reduction in malting wheat grains. LWT - Food SciTechnol 89:307–314

    Article  CAS  Google Scholar 

  • Kamimura H (1986) Conversion of zearalenone to zearalenone glycoside by Rhizopus sp. Appl Environ Microbiol 52:515–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khalil AA, Abou-Gabal AE, Abdellatef AA et al (2015) Protective role of probiotic lactic acid bacteria against dietary fumonisin b1-induced toxicity and DNA-fragmentation in sprague-dawley rats. Prep BiochemBiotechnol 45:530–550

    Article  CAS  Google Scholar 

  • Kharazian ZA, Salehi JG, Aghdasi M et al (2017) Biocontrol potential of Lactobacillus strains isolated from corn silages against some plant pathogenic fungi. Biol Control 110:33–43

    Article  Google Scholar 

  • Kimanya ME, Shirima CP, Magoha H (2014) Co-exposures of aflatoxins with deoxynivalenol and fumonisins from maize based complementary foods in Rombo, Northern Tanzania. Food Control 41:76–81

    Article  CAS  Google Scholar 

  • Król A, Pomastowski P, Rafińska K et al (2018) Microbiology neutralization of zearalenone using Lactococcus lactis and Bifidobacterium spp. Anal BioanalChem 410:943–952

    Article  CAS  Google Scholar 

  • Lee A, Kuan-Cheng C, Je-Ruei L (2017) Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. PLoS ONE 12:e0182220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lemmer ER, Vessey CJ, Gelderblom WCA et al (2004) Fumonisin B1-induced hepatocellular and cholangiocellulartumors in male Fischer 344 rats: potentiating effects of 2-acetylaminofluorene on oval cell proliferation and neoplastic development in a discontinued feeding study. Carcinog 25:1257–1264

    Article  CAS  Google Scholar 

  • Li P, Su R, Yin R et al (2020) Detoxification of mycotoxins through biotransformation. Toxins 12:1–37

    Article  Google Scholar 

  • Liu M, Gao R, Meng Q et al (2014) Toxic effects of maternal zearalenone exposure on intestinal oxidative stress, barrier function, immunological and morphological changes in rats. PLoS ONE 9:e106412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lopez-Seijas J, García-Fraga B, da Silva AF et al (2020) Wine lactic acid bacteria with antimicrobial activity as potential biocontrol agents against Fusarium oxysporum f Sp. LycopersicI. Agronomy 10:31

    Article  CAS  Google Scholar 

  • Mackei M, Orbán K, Molnár A et al (2020) Cellular effects of T-2 toxin on primary hepatic cell culture models of chickens. Toxins 12:1–14

    Article  CAS  Google Scholar 

  • Mandal V, Sen SK, Mandal NC (2007) Detection, isolation and partial characterization of antifungal compound produced by Pediococcusacidilactici LAB5. Nat Product Comun 2:671–674

    CAS  Google Scholar 

  • Marco MB, Moineau S, Quiberoni A (2012) Bacteriophages and dairy fermentations. Bacteriophage 2:149–158

    Article  PubMed Central  PubMed  Google Scholar 

  • Masching S, Naehrer K, Schwartz-Zimmermann HE et al (2016) Gastrointestinal degradation of fumonisin b1 by carboxylesterase fumd prevents fumonisin induced alteration of sphingolipid metabolism in turkey and swine. Toxins 8:84

    Article  PubMed Central  CAS  Google Scholar 

  • Mauch A, Dal Bello F, Coffey A et al (2010) The use of Lactobacillus brevis PS1 to in vitro inhibit the outgrowth of Fusarium culmorum and other common Fusarium species found on barley. Int J Food Microbiol 141:116–121

    Article  CAS  PubMed  Google Scholar 

  • McCormick SP, Price NPJ, Kurtzman CP (2012) Glucosylation and other biotransformations of T-2 toxin by yeasts of the trichomonascus clade. Appl Environ Microbiol 78:8694–8702

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Medina-Cordova N, López-Aguilar R, Ascencio F et al (2016) Biocontrol activity of the marine yeast Debaryomyceshansenii against phytopathogenic fungi and its ability to inhibit mycotoxins production in maize grain (Zea mays L.). Biol Control 97:70–79

    Article  Google Scholar 

  • Milani J, Maleki G (2014) Effects of processing on mycotoxin stability in cereals. J Sci Food Agric 94:2372–2375

    Article  CAS  PubMed  Google Scholar 

  • De Melo NT, Luz C, Torrijos R et al (2019) Potential application of lactic acid bacteria to reduce aflatoxin B1 and fumonisin B1 occurrence on corn kernels and corn ears. Toxins 12:1–16

    CAS  Google Scholar 

  • Minati MH, Mohammed-Ameen MK (2019) Novel report on six Fusarium species associated with head blight and crown rot of wheat in Basra province. Iraq Bull Natl Res Cent 43:139

    Article  Google Scholar 

  • Missmer SA, Suarez L, Felkner M et al (2006) Exposure to fumonisins and the occurrence of neutral tube defects along the Texas-Mexico border. Environ Health Perspect 114:237–241

    Article  PubMed  Google Scholar 

  • Mokoena MP, Chelule PK, Gqaleni N (2005) Reduction of fumonisin B1 and zearalenone by lactic acid bacteria in fermented maize meal. J Food Prot 68:2095–2099

    Article  CAS  PubMed  Google Scholar 

  • Moparthi S, Mary B, Josephine ME et al (2021) Fusarium spp. associated with root rot of pulse crops and their cross-pathogenicity to cereal crops in Montana. Plant Dis 105:548–557

    Article  PubMed  Google Scholar 

  • Munkvold GP (2017) Fusarium species and their associated mycotoxins. Methods MolBiol 1542:51–106

    CAS  Google Scholar 

  • Nagashima H (2015) Toxicity of trichothecene mycotoxin nivalenol in human leukemia cell line HL60. JSM Mycots 65:11–17

    Article  CAS  Google Scholar 

  • Navale V, Vamkudoth KR, Ajmera S, Dhuri V (2021) Aspergillus derived mycotoxins in food and the environment: prevalence, detection, and toxicity. Toxicol Reports 8:1008–1030. https://doi.org/10.1016/J.TOXREP.2021.04.013

    Article  CAS  Google Scholar 

  • Nucci M, Anaissie E (2002) Cutaneous infection by Fusarium species in healthy and immunocompromised hosts: implications for diagnosis and management. Clin Infect Dis 35:909–920

    Article  PubMed  Google Scholar 

  • Nyamete FA, Mourice B, Mugula JK (2016) Fumonisin B 1 reduction in lactic acid bacteria fermentation of maize porridges. Tanzania J AgricSci 15:13–20

    Google Scholar 

  • Pasquali M, Beyer M, Logrieco A et al (2016) A european database of F. graminearumand F. culmorumtrichothecene Genotypes. Front Microbiol 7:406

    Article  PubMed Central  PubMed  Google Scholar 

  • Pereira VL, Fernandes JO, Cunha SC (2015) Comparative assessment of three cleanup procedures after QuEChERS extraction for determination of trichothecenes (type A and type B) in processed cereal-based baby foods by GC-MS. Food Chem 1182:143–149

    Article  CAS  Google Scholar 

  • Pestka J (2010a) Toxicological mechanisms and potential health effects of deoxynivalenol and nivalenol. World Mycotoxin J 3:323–347

    Article  CAS  Google Scholar 

  • Pestka JJ (2010b) Deoxynivalenol-induced proinflammatory gene expression: mechanisms and pathological sequelae. Toxins 2:1300–1317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peters A, Krumbholz P, Jäger E et al (2019) Metabolites of lactic acid bacteria present in fermented foods are highly potent agonists of human hydroxycarboxylic acid receptor 3. PLoS Genet 15:e1008145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Piotrowska M (2014) The adsorption of ochratoxin A by Lactobacillus species. Toxins 6:2826–2839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Plasencia J, Mirocha CJ (1991) Isolation and characterization of zearalenone sulfate produced by Fusarium spp. Appl Environ Microbiol 57:146–150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poppenberger B, Berthiller F, Bachmann H et al (2006) Heterologous expression of Arabidopsis UDP-glucosyltransferases in Saccharomyces cerevisiae for production of zearalenone-4-O-glucoside. Appl Environ Microbiol 72:4404–4410

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ragoubi C, Quintieri L, Greco D et al (2021) Mycotoxin removal by Lactobacillus spp. and their application in animal liquid feed. Toxins 13:185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodríguez-Gómez F, Romero-Gil V, Arroyo-López FN et al (2017) Assessing the challenges in the application of potential probiotic lactic acid bacteria in the large-scale fermentation of spanish-style table olives. Front Microbiol 8:915

    Article  PubMed Central  PubMed  Google Scholar 

  • Sadiq FA, Yan B, Tian F et al (2019) Lactic acid bacteria as antifungal and anti-mycotoxigenic agents: a comprehensive review. Compr Rev Food Sci Food Saf 18:1403–1436

    Article  PubMed  Google Scholar 

  • Sadler TW, Merrill AH, Stevens VL et al (2002) Prevention of fumonisin B1-induced neural tube defects by folic acid. Teratol 66:169–176

    Article  CAS  Google Scholar 

  • Sanchez S, Demain AL (2008) Metabolic regulation and overproduction of primary metabolites. Microbiol and Biotechnol 1:283–319

    Article  CAS  Google Scholar 

  • Sang Y, Li W, Zhang G (2016) The protective effect of resveratrol against cytotoxicity induced by mycotoxin, zearalenone. Food Funct 7:3703–3715

    Article  CAS  PubMed  Google Scholar 

  • Sarrocco S, Vannacci G (2018) Preharvest application of beneficial fungi as a strategy to prevent postharvest mycotoxin contamination: a review. Crop Prot 110:160–170

    Article  Google Scholar 

  • Schaarschmidt S, Fauhl-Hassek C (2018) The fate of mycotoxins during the processing of wheat for human consumption. Compr Rev Food Sci Food Safety 17:556–593

    Article  CAS  Google Scholar 

  • Schertz H, Dänicke S, Frahm J et al (2018) Biomarker evaluation and toxic effects of an acute oral and systemic fumonisin exposure of pigs with a special focus on dietary fumonisin esterase supplementation. Toxins 10:296

    Article  PubMed Central  CAS  Google Scholar 

  • Sellamani M, Kalagatur NK, Siddaiah C et al (2016) Antifungal and zearalenone inhibitory activity of Pediococcuspentosaceus isolated from dairy products on Fusarium graminearum. FrontMicrobiol 7:1–12

    Google Scholar 

  • Shehata MG, Badr AN, Sohaimy SA et al (2019) Characterization of antifungal metabolites produced by novel lactic acid bacterium and their potential application as food biopreservatives. Ann AgricSci 64:71–78

    Article  Google Scholar 

  • Smith MC, Madec S, Coton E et al (2016) Natural Co-occurrence of mycotoxins in foods and feeds and their in vitro combined toxicological effects. Toxins 8:94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Springler A, Hessenberger S, Reisinger N et al (2017) Deoxynivalenol and its metabolite deepoxy-deoxynivalenol: multi-parameter analysis for the evaluation of cytotoxicity and cellular effects. Mycot Res 33:25–37

    Article  CAS  Google Scholar 

  • Summerell BA (2019) Resolving Fusarium: current status of the genus. Annu Rev Phytopathol 57:323–339

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Zhang M, Wang XH et al (2002) Effects of sterigmatocystin, deoxynivalenol and aflatoxin G1 on apoptosis of human peripheral blood lymphocytes in vitro. Biomed Environ Sci 15:145–152

    PubMed  Google Scholar 

  • Thomas B, Audonneau NC, MachouartM, et al (2019) Molecular identification of Fusarium species complexes: which gene and which database to choose in clinical practice. J Mycol Med 29:56–58

    Article  PubMed  Google Scholar 

  • Tran TM, Ameye M, Phan LT et al (2021) Post-harvest contamination of maize by Fusarium verticillioides and fumonisins linked to traditional harvest and post-harvest practices: a case study of small-holder farms in Vietnam. Int J Food Microbiol 2:339

    Google Scholar 

  • Ul Hassan Z, Al Thani RA, Atia F et al (2018) Co-occurrence of mycotoxins in commercial formula milk and cereal-based baby food on the Qatar market. Food Addit Contam 11:191–197

    Article  CAS  Google Scholar 

  • Vekiru E, Hametner C, Mitterbauer R et al (2010) Cleavage of zearalenone by Trichosporonmycotoxinivorans to a novel nonestrogenic metabolite. Appl Environ Microbiol 76:2353–2359

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • VossRiley KT (2013) Fumonisin toxicity and mechanism of action: overview and current perspectives. Food Safety 1:2013006

    Article  Google Scholar 

  • Wan MLY, Turner PC, Allen KJ et al (2016) Lactobacillus rhamnosus GG modulates intestinal mucosal barrier and inflammation in mice following combined dietary exposure to deoxynivalenol and zearalenone. J Funct Foods 22:34–43

    Article  CAS  Google Scholar 

  • Wang K, Ran L, Yan T et al (2019a) Anti-TGEV miller strain infection effect of Lactobacillus plantarum supernatant based on the JAK-STAT1 signaling pathway. Front Microbiol 10:1–12

    PubMed Central  PubMed  Google Scholar 

  • Wang N, Wu W, Pan J et al (2019b) Detoxification strategies for zearalenone using microorganisms: a review. Microorganisms 7:208

    Article  CAS  PubMed Central  Google Scholar 

  • Wetterhorn KM, Newmister SA, Caniza RK (2016) Crystal structure of Os79 (Os04g0206600) from Oryzasativa: A UDP-glucosyltransferase involved in the detoxification of deoxynivalenol. Biochem 55:6175–6186

    Article  CAS  Google Scholar 

  • Wu Q, Wang X, Nepovimova E et al (2017) Antioxidant agents against trichothecenes: new hints for oxidative stress treatment. Oncotarget 8:110708–110726

    Article  PubMed Central  PubMed  Google Scholar 

  • Yachnin BJ, Sprules T, McEvoy MB et al (2012) The substrate-bound crystal structure of a Baeyer-Villiger monooxygenase exhibits a criegee-like conformation. J Am ChemSoc 134:7788–7795

    Article  CAS  Google Scholar 

  • Yang S (1988) Papilloma of forestomach induced by Fusarium T-2 toxin in mice. Chinese J Oncol 10:339–341

    CAS  Google Scholar 

  • Yang S, Gong P, Pan J et al (2019) Pediococcuspentosaceus xy46 can absorb zearalenone and alleviate its toxicity to the reproductive systems of male mice. Microorganisms 7:266. https://doi.org/10.3390/microorganisms7080266

    Article  CAS  PubMed Central  Google Scholar 

  • Yang WC, Hsu TC, Cheng KC et al (2017a) Expression of the Clonostachysrosealactonohydrolase gene by Lactobacillus reuteri to increase its zearalenone-removing ability. Microb Cell Fact 16:69

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang X, Li L, Duan Y et al (2017b) Antioxidant activity of Lactobacillus plantarum JM113 in vitro and its protective effect on broiler chickens challenged with deoxynivalenol. J AnimSci 95:837–846

    CAS  Google Scholar 

  • Yepez A, Luz C, Meca G et al (2017) Biopreservation potential of lactic acid bacteria from Andean fermented food of vegetal origin. Food Control 78:393–400

    Article  CAS  Google Scholar 

  • Yu S, Jia B, Liu N et al (2020) Evaluation of the individual and combined toxicity of fumonisin mycotoxins in human gastric epithelial cells. Int J Mol Sci 21:5917

    Article  CAS  PubMed Central  Google Scholar 

  • Yuan Z, Matias FB, Yi JE et al (2016) T-2 toxin-induced cytotoxicity and damage on TM3 Leydig cells. Comp Biochem Physiol. https://doi.org/10.1016/j.cbpc.2015.12.005

    Article  Google Scholar 

  • Zebboudj N, Yezli W, Hamini-kadar N (2020) Antifungal activity of lactic acid bacteria against Fusarium species responsible for tomato crown and root rots. Environ ExpBiol 18:7–13

    Google Scholar 

  • Zentai A, Szeitzné-Szabó M, Mihucz G et al (2019) Occurrence and risk assessment of fumonisin b1 and b2 mycotoxins in maize-based food products in hungary. Toxins 11:1–14

    Article  CAS  Google Scholar 

  • Zhai Y, Hu S, Zhong LEI et al (2019a) Characterization of deoxynivalenol detoxification by Lactobacillus paracasei LHZ-1 isolated from yogurt. J Food Prot 82:1292–1299

    Article  CAS  PubMed  Google Scholar 

  • Zhai Y, Zhong GH, Lu Z et al (2019b) Detoxification of deoxynivalenol by a mixed culture of soil bacteria with 3-epi-deoxynivalenol as the main intermediate. Front Microbiol 10:1–12

    Article  Google Scholar 

  • Zhang GL, Feng YL, Song JL et al (2018a) Zearalenone: a mycotoxin with different toxic effect in domestic and laboratory animals’ Granulosa Cells. Front Genet 9:667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang GL, Song JL, Zhou Y et al (2018b) Differentiation of sow and mouse ovarian granulosa cells exposed to zearalenone in vitro using RNA-seq gene expression. ToxicolApplPharmacol 350:78–90

    CAS  Google Scholar 

  • Zhang YJ, Li S, Gan RY et al (2015) Impacts of gut bacteria on human health and diseases. Int J MolSci 16:7493–7519

    CAS  Google Scholar 

  • Zhao L, Jin H, Lan J et al (2015) Detoxification of zearalenone by three strains of Lactobacillus plantarum from fermented food invitro. Food Control 54:158–164

    Article  CAS  Google Scholar 

  • Zhou LH, Wang YL, Qiu M et al (2017) Analysis of T-2 toxin removal factors in a Lactococcus fermentation system. J Food Prot 80:1471–1477

    Article  CAS  PubMed  Google Scholar 

  • Zou CS, Mo MH, Gu YQ et al (2007) Possible contributions of volatile-producing bacteria to soil fungistasis. Soil BiolBiochem 39:2371–2379

    Article  CAS  Google Scholar 

  • Zou ZY, He ZF, Li HJ et al (2012) In vitro removal of deoxynivalenol and T-2 toxin by lactic acid bacteria. Food Sci Biotechnol 21:1677–1683

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Engineering Research Board (SERB), Department of Science and Technology, India (EEQ/2017/000502), Department of Biotechnology (DBT), Ministry of Science and Technology, India (BT/PR27494/NNT/28/1549/2018) and CSIR-National Chemical Laboratory for the necessary facilities.

Funding

Funding was provided by Science and Engineering Research Board (Grant No. EEQ/2017/000502), Department of Biotechnology,Ministry of Science and Technology (Grant No. BT/PR27494/NNT/28/1549/2018)

Author information

Authors and Affiliations

Authors

Contributions

All the co-authors are agreed to submit the manuscript for publication.

Corresponding author

Correspondence to KoteswaraRao Vamkudoth.

Ethics declarations

Competing interests

Authors declared that we don’t have any Conflicts of interest.

Ethical approval

Present study does not involve any ethical experiment.

Informed consent

Not applicable

Consent for publication

Not applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navale, V.D., Vamkudoth, K. Toxicity and preventive approaches of Fusarium derived mycotoxins using lactic acid bacteria: state of the art. Biotechnol Lett 44, 1111–1126 (2022). https://doi.org/10.1007/s10529-022-03293-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-022-03293-4

Keywords

Navigation