Skip to main content
Log in

Current status and future possibilities of molecular genetics techniques in Brassica napus

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

As PCR methods have improved over the last 15 years, there has been an upsurge in the number of new DNA marker tools, which has allowed the generation of high-density molecular maps for all the key Brassica crop types. Biotechnology and molecular plant breeding have emerged as a significant tool for molecular understanding that led to a significant crop improvement in the Brassica napus species. Brassica napus possess a very complicated polyploidy-based genomics. The quantitative trait locus (QTL) is not sufficient to develop effective markers for trait introgression. In the coming years, the molecular marker techniques will be more effective to determine the whole genome impairing desired traits. Available genetic markers using the single-nucleotide sequence (SNP) technique and high-throughput sequencing are effective in determining the maps and genome polymorphisms amongst candidate genes and allele interactions. High-throughput sequencing and gene mapping techniques are involved in discovering new alleles and gene pairs, serving as a bridge between the gene map and genome evaluation. The decreasing cost for DNA sequencing will help in discovering full genome sequences with less resources and time. This review describes (1) the current use of integrated approaches, such as molecular marker technologies, to determine genome arrangements and interspecific outcomes combined with cost-effective genomes to increase the efficiency in prognostic breeding efforts. (2) It also focused on functional genomics, proteomics and field-based breeding practices to achieve insight into the genetics underlying both simple and complex traits in canola.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aebersold R, Mann M (2003) Mass spectrometry-based proteomics. Nature 422:198–207

    Article  CAS  PubMed  Google Scholar 

  • Akibode S, Maredia M (2011) Global and regional trends in production trade and consumption of food legume crops. Department of Agricultural Food and Resource Economics Michigan State University: 87

  • Albert TJ, Molla MN, Muzny DM, Nazareth L, Wheeler D, Song X, Richmond TA, Middle CM, Rodesch MJ, Charles J, Packard CJ, Weinstock GM, Gibbs RA (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4:903–905

    Article  CAS  PubMed  Google Scholar 

  • Allender CJ, King GJ (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54

    Article  PubMed  PubMed Central  Google Scholar 

  • Austin RB, Flavell RB, Henson IE, Lowe HJB (1986) Molecular biology and crop improvement: a case study of wheat oilseed rape and faba beans. Aus Ann Bot 96:363–377

    Google Scholar 

  • Bancroft IC, Morgan F, Fraser J, Higgins R, Wells L, Clissold D, Baker Y, Long J, Meng X, Wang S, Trick LM (2011) Dissecting the genome of the polyploidy crop oilseed rape by transcriptome sequencing. Nat Biotechnol 29:762–766

    Article  CAS  PubMed  Google Scholar 

  • Barret P, Delourme R, Foisset N, Renard M (1998) Development of a SCAR (sequence characterised amplified region) marker for molecular tagging of the dwarf breizh (Bzh) gene in Brassica napus L. Theor Appl Genet 97:828–833

    Article  CAS  Google Scholar 

  • Basunanda PM, Radoev W, Ecke W, Friedt H, Becker C, Snowdon RJ (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet 120:271–281

    Article  CAS  PubMed  Google Scholar 

  • Beeck C, Cowling W, Smith A, Cullis BR (2010) Analysis of yield and oil from a series of canola breeding trials. Part I. Fitting factor analytic mixed models with pedigree information This article is one of a selection of papers from the conference “Exploiting Genome-wide Association in Oilseed Brassicas: a model for genetic improvement of major OECD crops for sustainable farming”. Genome 53:992–1001

    Article  CAS  PubMed  Google Scholar 

  • Berger J, Milroy S, Turner N, Siddique K, Imtiaz M, Malhotra R (2011) Chickpea evolution has selected for contrasting phonological mechanisms among different habitats. Euphytica 180:1–15

    Article  Google Scholar 

  • Bing DJ, Downey RK, Rakow GFW (1991) Potential of gene transfer among oilseed Brassica and their weedy relatives. GCIRC Congress: 1022–1027

  • Brandt S, Malhi S, Ulrich D, Lafond G, Kutcher H, Johnston A (2007) Seeding rate, fertilizer level and disease management effects on hybrid versus open pollinated canola (Brassica napus L.). Can J Plant Sci 87:255–266

    Article  Google Scholar 

  • Brown GG, Formanová N, Wargachuk JH, Dendy RC, Patil P, Laforest M, Zhang J, Cheung WY, Landry BS (2003) The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J 35:262–272

    Article  CAS  PubMed  Google Scholar 

  • Buckler ES, Gaut BS, McMullen MD (2006) Molecular and functional diversity of maize. Curr Opini Plant Biol 9:172–176

    Article  CAS  Google Scholar 

  • Collard BC, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans Royal Soc B 363:557–572

    Article  CAS  Google Scholar 

  • Collier MJ, Mullins E (2012) Assessing the Impact of Pollen-mediated Gene Flow from GM Herbicide Tolerant Brassica Napus into Common Wild Relatives in Ireland Biology & Environment: Proceedings of the Royal Irish Academy. The Royal Irish Academy, pp. 257–266

  • Das S, Roscoe T, Delseny M, Srivastava P, Lakshmikumaran M (2002) Cloning and molecular characterization of the Fatty Acid Elongase 1 (FAE 1) gene from high and low erucic acid lines of Brassica campestris and Brassica oleracea. Plant Sci 162:245–250

    Article  CAS  Google Scholar 

  • Fahad S, Nie L, Khan FA, Chen Y, Hussain S, Wu C et al (2014) Disease resistance in rice and the role of molecular breeding in protecting rice crops against diseases. Biotechnol Lett. https://doi.org/10.1007/s10529-014-1510-9

    Google Scholar 

  • Ferreira M, Williams P, Osborn T (1995) Mapping of a locus controlling resistance to Albugo candida in Brassica napus using molecular markers. Phytopathol 85:218–220

    Article  CAS  Google Scholar 

  • Fray M, Puangsomlee P, Goodrich J, Coupland G, Evans E, Arthur A, Lydiate D (1997) The genetics of stamenoid petal production in oilseed rape (Brassica napus) and equivalent variation in Arabidopsis thaliana. Theor Appl Genet 94:731–736

    Article  CAS  Google Scholar 

  • Gan L, Zhang CY, Wang XD, Wang H, Long Y, Yin Y, Li DR, Tian J, Li ZHY, Lin ZW (2013) Proteomic and comparative genomic analysis of two Brassica napus lines differing in oil content. J Proteome Res 12:4965–4978

    Article  CAS  PubMed  Google Scholar 

  • Gholami M, Bekele WA, Schondelmaier J, Snowdon RJ (2012) A tailed PCR procedure for cost-effective two-order multiplex sequencing of candidate genes in polyploid plants. J Plant Biotechnol 10:635–645

    Article  CAS  Google Scholar 

  • Goffman FD, Alonso AP, Schwender J, Shachar-Hill Y, Ohlrogge JB (2005) Light enables a very high efficiency of carbon storage in developing embryos of rapeseed. Plant Physiol 138:2269–2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gulden RH, Shirtliffe SJ, Thomas AG (2009) Harvest losses of canola (Brassica napus) cause large seedbank inputs. Weed Sci 51:83–86

    Article  Google Scholar 

  • Gupta K, Prem D, Nashaat N, Agnihotri A (2006) Response of interspecific Brassica juncea/Brassica rapa hybrids and their advanced progenies to Albugo candida (white blister). Plant Pathol J 55:679–689

    Article  CAS  Google Scholar 

  • Hajduch M, Casteel JE, Hurrelmeyer KE, Song Z, Agrawal GK, Thelen JJ (2006) Proteomic analysis of seed filling in Brassica napus. Developmental characterization of metabolic isozymes using high-resolution two-dimensional gel electrophoresis. Plant Physiol 141:32–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harjes CE, Rocheford TR, Bai L, Brutnell TP, Kandianis CB, Sowinski SG, Stapleton AE, Vallabhaneni R, Williams M, Wurtzel ET (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize bio fortification. Science 319:330–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan M, Seyis F, Badani A, Pons-Kühnemann J, Friedt W, Lühs W, Snowdon R (2006) Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genet Resour Crop Evol 53:793–802

    Article  CAS  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    Article  CAS  Google Scholar 

  • Heidarvand L, Amiri RM, Naghavi MR, Farayedi Y, Sadeghzadeh B, Alizadeh K (2011) Physiological and morphological characteristics of chickpea accessions under low temperature stress. Russian J Plant Physiol 58:157–163

    Article  CAS  Google Scholar 

  • Henikoff S, Furuyama T, Ahmad K (2004) Histone variants, nucleosome assembly and epigenetic inheritance. Trends Genet 20:320–326

    Article  CAS  PubMed  Google Scholar 

  • Horst L, Wenzel G (2007) Molecular marker systems in plant breeding and crop improvement 55. Springer

  • Howell P, Sharpe A, Lydiate D (2003) Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome 46:454–460

    Article  CAS  PubMed  Google Scholar 

  • Howlett BJ (2004) Current knowledge of the interaction between Brassica napus and Leptosphaeria maculans. Canad J Plant Pathol 26:245–252

    Article  Google Scholar 

  • Hu J, Quiros C, Arus P, Strass D, Robbelen G (1995) Mapping of a gene determining linolenic acid concentration in rapeseed with DNA-based markers. Theor Appl Genet 90:258–262

    CAS  PubMed  Google Scholar 

  • Hu J, Li G, Struss D, Quiros C (1999) SCAR and RAPD markers associated with 18-carbon fatty acids in rapeseed Brassica napus. Plant Breed J 118:145–150

    Article  CAS  Google Scholar 

  • Hu S, Yu C, Zhao H, Sun G, Zhao S, Vyvadilova M, Kucera V (2007) Genetic diversity of Brassica napus L. Germplasm from China and Europe assessed by some agronomically important characters. Euphytica 154:9–16

    Article  CAS  Google Scholar 

  • Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391

    Article  CAS  PubMed  Google Scholar 

  • Jean M, Brown G, Landry B (1998) Targeted mapping approaches to identify DNA markers linked to the Rfp1 restorer gene for the ‘Polima’ CMS of canola (Brassica napus L.). Theor Appl Genet 97:431–438

    Article  CAS  Google Scholar 

  • Jesske T, Olberg B, Becker H (2011) Resynthesized rapeseed with wild Brassica species as new genetic resource for breeding Proc. 13th International Rapeseed Congress, pp. 816–819

  • Kirkegaard J, Gardner P, Angus J, Koetz E (1994) Effect of Brassica break crops on the growth and yield of wheat. Crop Pasture Sci 45:529–545

    Article  Google Scholar 

  • Kole C, Thormann C, Karlsson B, Palta J, Gaffney P, Yandell B, Osborn T (2002a) Comparative mapping of loci controlling winter survival and related traits in oilseed Brassica rapa and B. napus. Mol breed 9:201–210

    Article  CAS  Google Scholar 

  • Kole C, Williams P, Rimmer S, Osborn T (2002b) Linkage mapping of genes controlling resistance to white rust (Albugo candida) in Brassica rapa (syn. campestris) and comparative mapping to Brassica napus and Arabidopsis thaliana. Genome 45:22–27

    Article  CAS  PubMed  Google Scholar 

  • Long D, Martin M, Sundberg E, Swinburne J, Puangsomlee P, Coupland G (1993) The maize transposable element system Ac/Ds as a mutagen in Arabidopsis: identification of an albino mutation induced by Ds insertion. Proc Natl Acad Sci USA 90:10370–10374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lukens LN, Quijada PA, Udall J, Pires JC, Schranz M, Osborn TC (2004) Genome redundancy and plasticity within ancient and recent Brassica crop species. Biol J Linnean Soc 82:665–674

    Article  Google Scholar 

  • Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nat 437:376–380

    Article  CAS  Google Scholar 

  • Mbarek KB, Boubaker M (2013) Evaluation of kabuli chickpea genotypes (Cicer arietinum L.) collection under tunisian semi-arid conditions. Albanian J Agri Sci 12(2), 191-201

  • Mekonnen F, Mekbib F, Kumar S, Ahmed S, Sharma T (2014) Phenotypic variability and characteristics of lentil (Lens culinaris Medik.) germplasm of Ethiopia by multivariate analysis. J Agri Crop Res 2:104–116

    Google Scholar 

  • Moose SP, Mumm RH (2008) Molecular plant breeding as the foundation for 21st century crop improvement. Plant Physiol 147:969–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson RJ, Naylor RL, Jahn MM (2004) The role of genomics research in improvement of “orphan” crops. Crop Sci 44:1901–1904

    Article  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104:16450–16455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noman A, Fahad S, Aqeel M, Ali U, Amanullah Anwar S, Baloch SK, Zainab M (2017) miRNAs: major modulators for crop growth and development under abiotic stresses. Biotechnol Lett. https://doi.org/10.1007/s10529-017-2302-9

    Google Scholar 

  • Norton R, Kirkegaard J, Angus J, Potter T (1999) Canola in rotations Canola in Australia: the first thirty years’(Eds P Salisbury, T Potter, G McDonald, A Green) pp:23–28

  • Parkin IA, Clarke WE, Sidebottom C, Zhang W, Robinson SJ, Links MG, Karcz S, Higgins EE, Fobert P, Sharpe AG (2010) Towards unambiguous transcript mapping in the allotetraploid Brassica napus. Genome 53:929–938

    Article  CAS  PubMed  Google Scholar 

  • Penfield S, Rylott EL, Gilday AD, Graham S, Larson TR, Graham IA (2004) Reserve mobilization in the Arabidopsis endosperm fuels hypocotyl elongation in the dark is independent of abscisic acid and requires phosphoenolpyruvate carboxykinase1. Plant Cell Online 16:2705–2718

    Article  CAS  Google Scholar 

  • Plieske J, Struss D (2001) STS markers linked to Phoma resistance genes of the Brassica B-genome revealed sequence homology between Brassica nigra and Brassica napus. Theor Appl Genet 102:483–488

    Article  CAS  Google Scholar 

  • Radoev M, Becker HC, Ecke W (2008) Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by quantitative trait locus mapping. Genetics 179: 1547–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raffel SJ, Stabb EV, Milner JL, Handelsman J (1996) Genotypic and phenotypic analysis of zwittermicin A-producing strains of Bacillus cereus. Microbiol 142:3425–3436

    Article  CAS  Google Scholar 

  • Rehman H, Iqbal Q, Farooq M, Wahid A, Afzal I, Basra SM (2013) Sulphur application improves the growth, seed yield and oil quality of canola. Acta Physiol Plant 35:2999–3006

    Article  CAS  Google Scholar 

  • Rieger M, Potter T, Preston C, Powles S (2001) Hybridisation between Brassica napus L. and Raphanus raphanistrum L. under agronomic field conditions. Theor Appl Genet 103:555–560

    Article  CAS  Google Scholar 

  • Rieger MA, Lamond M, Preston C, Powles SB, Roush RT (2002) Pollen-mediated movement of herbicide resistance between commercial canola fields. Science 296:2386–2388

    Article  CAS  PubMed  Google Scholar 

  • Ringdahl E, McVetty P, Sernyk J (1987) Intergeneric hybridization of Diplotaxis spp. with Brassica napus: a source of new CMS systems? CanJ Plant Sci 67:239–243

    Article  Google Scholar 

  • Scheffler JA, Dale PJ (1994) Opportunities for gene transfer from transgenic oilseed rape (Brassica napus) to related species. Transgenic Res 3:263–278

    Article  CAS  Google Scholar 

  • Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) A novel role for Rubisco in the carbon economy of developing seeds. Nat 432:779–782

    Article  CAS  Google Scholar 

  • Shahin Y, Valiollah R (2009) Effects of row spacing and seeding rates on some agronomical traits of spring canola (Brassica napus L.) cultivars. J Cent Eur Agr 10:115–121

    Google Scholar 

  • Sivasithamparam K, Barbetti MJ, Li H (2005) Recurring challenges from a necrotrophic fungal plant pathogen: a case study with Leptosphaeria maculans (causal agent of blackleg disease in Brassicas) in Western Australia. Ann Bot 96:363–377

    Article  PubMed  PubMed Central  Google Scholar 

  • Snowdon RJ, Friedt W (2004) Molecular markers in Brassica oilseed breeding: current status and future possibilities. Plant Breed 123:1–8

    Article  CAS  Google Scholar 

  • Snowdon RJ, Iniguez LFL (2012) Potential to improve oilseed rape and canola breeding in the genomics era. Plant Breed 131:351–360

    Article  CAS  Google Scholar 

  • Somers DJ, Rakow G, Prabhu VK, Friesen KR (2001) Identification of a major gene and RAPD markers for yellow seed coat colour in Brassica napus. Genome 44:1077–1082

    Article  CAS  PubMed  Google Scholar 

  • Starner DE, Hamama AA, Bhardwaj L (1999) Canola oil yield and quality as affected by production practices in Virginia. Perspectives on new crops and new uses. ASHS Press Alexandria, VA, pp 254–256

    Google Scholar 

  • Town CD, Cheung F, Maiti R, Crabtree J, Haas BJ, Wortman JR, Hine EE, Althoff R, Arbogast TS, Tallon LJ (2006) Comparative genomics of Brassica oleracea and Arabidopsis thaliana reveal gene loss fragmentation and dispersal after polyploidy. Plant Cell Online 18:1348–1359

    Article  CAS  Google Scholar 

  • Tuberosa R, Salvi S, Giuliani S, Sanguineti MC, Bellotti M, Conti S, Landi P (2007) Genome-wide approaches to investigate and improve maize response to drought. Crop Sci 47: S-120-S-141

  • Uzunova M, Ecke W, Weissleder K, Röbbelen G (1995) Mapping the genome of rapeseed (Brassica napus L.). I. Construction of an RFLP linkage map and localization of QTLs for seed glucosinolate content. Theor Appl Genet 90:194–204

    Article  CAS  PubMed  Google Scholar 

  • Varshney R, Horres R, Molina C, Nayak S, Jungmann R, Swamy P, Winter P, Jayashree B, Kahl G, Hoisington D (2007) Extending the repertoire of microsatellite markers for genetic linkage mapping and germplasm screening in chickpea. Journal of SAT Agri Res 5:1–3

    Google Scholar 

  • Warwick, S (2005) Potential gene flow from Brassica juncea (imidazolinone-tolerant PNT) into Sinapis arvensis - characterization of F2, F3, F4 and backcross hybrid generations. Final Report to the Canadian Food Inspection Agency

  • Warwick SI, Beckie HJ, Thomas AG, McDonald T (2000) The biology of Canadian weeds. 8. Sinapis arvensis. L. (updated). Can J Plant Sci 80:939–961

    Article  Google Scholar 

  • Wu JG, Shi CH, Zhang HZ (2006) Partitioning genetic effects due to embryo cytoplasm and maternal parent for oil content in oilseed rape (Brassica napus L.). Genet Mol Biol 29:533–538

    Article  Google Scholar 

  • Xiao Y, Chen L, Zou J, Tian E, Xia W, Meng J (2010) Development of a population for substantial new type Brassica napus diversified at both A/C genomes. T Theor Appl Genet 121:1141–1150

    Article  Google Scholar 

  • Joshi N, Sharma S, Subramanian R, Rao K. Genetic Fingerprinting of Chickpea (Cicer Arietinum L.) Germplasm Using Morphological and Molecular Markers

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou W, Zhang G, Tuvesson S, Dayteg C, Gertsson B (2006) Genetic survey of Chinese and Swedish oilseed rape (Brassica napus L.) by simple sequence repeats (SSRs). Genet Resour Crop Evol 53:443–447

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research, College of Food and Agricultural Sciences, King Saud University, Saudi Arabia for support and cooperation in the completion of the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shah Fahad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, M., Alghamdi, S.S., Habib ur Rahman, M. et al. Current status and future possibilities of molecular genetics techniques in Brassica napus. Biotechnol Lett 40, 479–492 (2018). https://doi.org/10.1007/s10529-018-2510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-018-2510-y

Keywords

Navigation