Skip to main content
Log in

Uptake and biotransformation of pure commercial microcystin-LR versus microcystin-LR from a natural cyanobacterial bloom extract in the aquatic fungus Mucor hiemalis

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To evaluate the remediation efficiency of Mucor hiemalis by comparing media elimination, uptake, and biotransformation of microcystin-LR with exposure to pure toxin versus a crude bloom extract.

Results

With exposure to the extract, the elimination rate of microcystin-LR from the media, which was 0.28 ng MC-LR l−1 h−1, was significantly higher compared to that achieved with exposure to the pure toxin (0.16 ng MC-LR l−1 h−1) after 24 h. However, intracellular breakdown of microcystin-LR was significantly lower in the extract exposed pellets compared to the pure toxin treated fungal pellets over time. This coincided with reduced intracellular glutathione S-transferase activity with crude extract exposure which could be responsible for the detection of only the glutathione conjugate of microcystin-LR.

Conclusion

This paper signifies the importance of using laboratory exposure scenarios which resemble conditions in nature to fully understand and evaluate remediation efficiency. There is merit in using M. hiemalis for mycoremediation of cyanotoxins in surface waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balsano E, Esterhuizen-Londt M, Hoque E, Pflugmacher S (2015) Toxin resistance in aquatic fungi poses environmentally friendly remediation possibilities: a study on the growth responses and biosorption potential of Mucor hiemalis EH5 against cyanobacterial toxins. Int J Water Wastewater Treat 1:1–9

    Google Scholar 

  • Balsano E, Esterhuizen-Londt M, Hoque E, Pflugmacher S (2016) Fungal pellets as potential tools to control water pollution: strategic approach for the pelletization and subsequent microcystin-LR uptake by Mucor hiemalis. J App Biol Biotech 4:031–041

    Google Scholar 

  • Best JH, Pflugmacher S, Wiegand C, Eddy FB, Metcalf JS, Codd GA (2002) Effects of enteric bacterial and cyanobacterial lipopolysaccharides, and of microcystin-LR, on glutathione S-transferase activities in zebra fish (Danio rerio). Aquat Toxicol 60:223–231

    Article  CAS  PubMed  Google Scholar 

  • Contardo-Jara V, Funke MS, Peuthert A, Pflugmacher S (2013) β-N-methylamino-l-alanine exposure alters defense against oxidative stress in aquatic plants Lomariopsis lineata, Fontinalis antipyretica, Riccia fluitans and Taxiphyllum barbieri. Ecotoxicol Environ Saf 88:72–78

    Article  CAS  PubMed  Google Scholar 

  • Cox PA, Banack SA, Murch SJ (2003) Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among the Chamorro people of Guam. Proc Natl Acad Sci USA 100:13380–13383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esterhuizen M, Downing TG (2008) β-N-methylamino-l-alanine (BMAA) in novel South African cyanobacterial isolates. Ecotoxicol Environ Saf 71:309–313

    Article  CAS  PubMed  Google Scholar 

  • Esterhuizen-Londt M, Pflugmacher S, Downing TG (2011) The effect of β-N-methylamino-l-alanine (BMAA) on oxidative stress response enzymes of the macrophyte Ceratophyllum demersum. Toxicon 57:803–810

    Article  CAS  PubMed  Google Scholar 

  • Esterhuizen-Londt M, von Schnehen M, Kühn S, Pflugmacher S (2016) Oxidative stress responses in the animal model, Daphnia pulex exposed to a natural bloom extract versus artificial cyanotoxin mixtures. Aquat Toxicol 179:151–157

    Article  CAS  PubMed  Google Scholar 

  • Habig W, Pabst MJ, Jacoby WB (1974) Glutathione S-transferase: the first step in mercapturic acid formation. J Biol Chem 249:1730–1739

    Google Scholar 

  • Hare CE, Demir E, Coyne KJ, Craig Cary S, Kirchman DL, Hutchins DA (2005) A bacterium that inhibits the growth of Pfiesteria piscicida and other dinoflagellates. Harmful Algae 4:221–234

    Article  Google Scholar 

  • Hitzfeld BC, Höger SJ, Dietrich DR (2000) Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment. Environ Health Perspect 108:113–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoque E, Pflugmacher S, Fritscher J, Wolf M (2007) Induction of glutathione S-transferase in biofilms and germinating spores of Mucor hiemalis strain EH5 from cold sulfidic spring waters. Appl Environ Microbiol 73:2697–2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Y, Han G, Wang C, Guo P, Jiang W, Li X, Tian X (2010) The efficacy and mechanisms of fungal suppression of freshwater harmful algal bloom species. J Hazard Mater 183:176–181

    Article  CAS  PubMed  Google Scholar 

  • Jia Y, Jingjing DU, Song F, Zhao G, Tian X (2012) A fungus capable of degrading microcystin-LR in the algal culture of Microcystis aeruginosa PCC7806. Appl Biochem Biotechnol 166:987–996

    Article  CAS  PubMed  Google Scholar 

  • Jones GJ, Orr PT (1994) Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Water Res 28:871–876

    Article  CAS  Google Scholar 

  • Mandal S, Rath J (2015) Secondary metabolites of cyanobacteria and drug development. In: Springer Briefs in Pharmaceutical Science and Drug Development. Springer International Publishing, Switzerland

  • Pearson L, Mihali T, Moffitt M, Kellmann R, Neilan B (2010) On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 8:1650–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pflugmacher S, Wiegand C, Oberemm A, Beattie KA, Krause E, Codd GA, Steinberg CE (1998) Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxication. Biochim Biophys Acta 1425:527–533

    Article  CAS  PubMed  Google Scholar 

  • Pflugmacher S, Kühn S, Lee S-H, Choi J-W, Baik S, Kwon K-S, Contardo-Jara V (2015) Green liver systems for water purification: using the phytoremediation potential of aquatic macrophytes for the removal of different cyanobacterial toxins from water. Am J Plant Sci 6:1607–1618

    Article  CAS  Google Scholar 

  • Pointing SB (2001) Feasibility of bioremediation by white-rot fungi. Appl Microbiol Biotechnol 57:20–33

    Article  CAS  PubMed  Google Scholar 

  • Romero-Oliva C, Block T, Contardo-Jara V, Pflugmacher S (2014) Accumulation of microcystin congeners in different aquatic plants and crops—a case study from lake Amatitlán, Guatemala. Ecotoxicol Environ Saf 102:121–128

    Article  CAS  PubMed  Google Scholar 

  • Schmidt JR, Wilhelm SW, Boyer GL (2014) The fate of microcystins in the environment and challenges for monitoring. Toxins 6:3354–3387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholz SN, Esterhuizen-Londt M, Pflugmacher S (2017) Rise of toxic cyanobacterial blooms in temperate freshwater lakes: causes, correlations and possible counter measures. Toxicol Environ Chem 99:543–577

    Article  CAS  Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water: a guide to public health significance, monitoring and management. E & FN Spon, London, pp 41–111

    Google Scholar 

  • Wang Q, Su M, Zhu W, Li X, Jia Y, Guo P, Chen Z, Jiang W, Tian X (2010) Growth inhibition of Microcystis aeruginosa by white-rot fungus Lopharia spadicea. Water Sci Technol 62:317–323

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Evelyn Balsano (TU Berlin) and Martina Bessi (University of Florence) for assistance in the research.

Funding

The authors declare that no specific funding was received for this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maranda Esterhuizen-Londt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esterhuizen-Londt, M., Hertel, S. & Pflugmacher, S. Uptake and biotransformation of pure commercial microcystin-LR versus microcystin-LR from a natural cyanobacterial bloom extract in the aquatic fungus Mucor hiemalis . Biotechnol Lett 39, 1537–1545 (2017). https://doi.org/10.1007/s10529-017-2378-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-017-2378-2

Keywords

Navigation