Skip to main content
Log in

Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Objectives

To genetically engineer Saccharomyces cerevisiae for improved ethanol productivity from glucose/xylose mixtures.

Results

An endogenous gene cassette composed of aldose reductase (GRE3), sorbitol dehydrogenase (SOR1) and xylulose kinase (XKS1) with a PGK1 promoter and a terminator was introduced into two S. cerevisiae strains, a laboratory strain (CEN.PK2-1C) and an industrial strain (Kyokai No. 7). The engineered Kyokai No. 7 strain (K7-XYL) exhibited a higher sugar consumption rate (1.03 g l−1 h−1) and ethanol yield (63.8 %) from a glucose and xylose mixture compared to the engineered CEN.PK2-1C strain. Furthermore, K7-XYL produced a larger amount of ethanol (39.6 g l−1) compared to K7-SsXYL (32 g l−1) with integrated xylose reductase and xylitol dehydrogenase from a xylose-assimilating yeast Scheffersomyces stipitis instead of GRE3 and SOR1.

Conclusion

The created S. cerevisiae strain showed sufficient xylose-fermenting ability to be used for efficient ethanol production from glucose/xylose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Gonçalves DL, Matsushika A, de Sales BB, Goshima T, Bon EPS, Stambuk BU (2014) Xylose and xylose/glucose co-fermentation by recombinant Saccharomyces cerevisiae strains expressing individual hexose transporters. Enzym Microb Technol 63:13–20

    Article  Google Scholar 

  • Ho NW, Chen Z, Brainard AP (1998) Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol 64:1852–1859

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Karhumaa K, Fromanger R, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007a) High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol 73:1039–1046

    Article  CAS  PubMed  Google Scholar 

  • Karhumaa K, Sanchez RG, Hahn-Hägerdal B, Gorwa-Grauslund MF (2007b) Comparison of the xylose reductase-xylose dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae. Microb Cell Fact 6:5

    Article  PubMed Central  PubMed  Google Scholar 

  • Kötter P, Ciriacy M (1993) Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783

    Article  Google Scholar 

  • Limtong S, Sumpradit T, Kitpreechavanich V, Tuntirungkij M, Seki T, Yoshida T (2000) Effect of acetic acid on growth and ethanol fermentation of xylose fermenting yeast and Saccharomyces cerevisiae. Kasetsart J 34:64–73

    CAS  Google Scholar 

  • Madhavan A, Tamalampudi S, Ushida K, Kanai D, Kitahara S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2009) Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol 82:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Richard P, Toivari MH, Penttilä M (1999) Evidence that the gene YLR070c of Saccharomyces cerevisiae encodes a xylitol dehydrogenase. FEBS Lett 457:135–138

    Article  CAS  PubMed  Google Scholar 

  • Sarthy AV, Schopp C, Idler KB (1994) Cloning and sequence determination of the gene encoding sorbitol dehydrogenase from Saccharomyces cerevisiae. Gene 140:121–126

    Article  CAS  PubMed  Google Scholar 

  • Toivari MH, Salusjärvi L, Ruohonen L, Penttilä M (2004) Endogenous xylose pathway in Saccharomyces cerevisiae. Appl Environ Microbiol 70:3681–3686

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Träff KL, Jönsson LJ, Hahn-Hägerdal B (2002) Putative xylose and arabinose reductases in Saccharomyces cerevisiae. Yeast 19:1233–1241

    Article  PubMed  Google Scholar 

  • Urbanczyk H, Noguchi C, Wu H, Watanabe D, Akao T, Takagi H, Shimoi H (2011) Sake yeast strains have difficulty in entering a quiescent state after cell growth cessation. J Biosci Bioeng 112:44–48

    Article  CAS  PubMed  Google Scholar 

  • Walfriedsson M, Bao X, Anderlund M, Lilius G, Bülow L, Hahn-Hägerdal B (1996) Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62:4184–4190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Konishi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konishi, J., Fukuda, A., Mutaguchi, K. et al. Xylose fermentation by Saccharomyces cerevisiae using endogenous xylose-assimilating genes. Biotechnol Lett 37, 1623–1630 (2015). https://doi.org/10.1007/s10529-015-1840-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-015-1840-2

Keywords

Navigation