Skip to main content
Log in

Impact of lignins isolated from pretreated lignocelluloses on enzymatic cellulose saccharification

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Lignins were enzymatically isolated from corn stover and wheat straw samples and subjected to hydrothermal or wet oxidation pretreatments for enzyme adsorption experimentations. Lignin contents of the isolates ranged from 26 to 71 % (w/w); cellulose ranged from 3 to 22 % (w/w); xylan from 0.7 to 6 % (w/w) and ash was from 5.8 to 30 % (w/w). ATR-IR analyses indicated significant and similar levels of calcium in all lignin isolates. Commercial cellulase adsorption studies showed that the presence of these lignins had no significant impact on the total amount of adsorbed enzyme in cellulose and cellulose–lignin systems. Consequently, the presence of the lignins had minimal effect, if any, on enzymatic cellulose conversion. Furthermore, this result, coupled with significant calcium levels in the isolated lignins, supports previous work suggesting lignin–calcium complexes reduce enzyme–lignin interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berlin A, Gilkes N, Kurabi A, Bura R, Tu M, Kilburn D, Saddler JN (2005) Weak lignin-binding enzymes: a novel approach to improve activity of cellulases for hydrolysis of lignocellulosics. Appl Biochem Biotechnol 163:121–124

    Google Scholar 

  • Blackwell J, Vasko PD, Koenig JL (1970) Infrared and Raman spectra of cellulose from cell wall of Valonia ventricosa. J Appl Phys 41(11):4375–4380

    Article  CAS  Google Scholar 

  • Buanafina MMD (2009) Feruloylation in grasses: current and future perspectives. Mol Plant 2(5):861–872

    Article  CAS  Google Scholar 

  • Buranov AU, Mazza G (2008) Lignin in straw of herbaceous crops. Ind Crops Prod 28(3):237–259

    Article  CAS  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25(7):759–761

    Article  PubMed  CAS  Google Scholar 

  • Chukin GD, Malevich VI (1977) Infrared spectra of silica. J Appl Spectrosc 26(2):223–229

    Article  Google Scholar 

  • Chylenski P, Felby C, Østergaard-Haven M, Gama M, Selig MJ (2012) Precipitation of commercial Trichoderma reesei cellulase preparations under standard enzymatic hydrolysis conditions for lignocelluloses. Biotechnol Lett 34:1475–1482

    Article  PubMed  CAS  Google Scholar 

  • Collier W, Kalasinsky VF, Schultz TP (1997) Infrared study of lignin: assignment of methoxyl C–H bending and stretching bands. Holzforschung 51(2):167–168

    Article  CAS  Google Scholar 

  • Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45:21–27

    Article  CAS  Google Scholar 

  • Fox SC, McDonald AG (2010) Chemical and thermal characterization of three industrial lignins and their corresponding lignin esters. Bioresources 5(2):990–1009

    Google Scholar 

  • Hansen B (1989) Determination of nitrogen as elementary-N, an alternative to Kjeldahl. Acta Agric Scand 39(2):113–118

    Article  CAS  Google Scholar 

  • Jung HJG, Himmelsbach DS (1989) Isolation and characterization of wheat straw lignin. J Agric Food Chem 37(1):81–87

    Article  CAS  Google Scholar 

  • Kaparaju P, Felby C (2010) Characterization of lignin during oxidative and hydrothermal pre-treatment processes of wheat straw and corn stover. Bioresour Technol 101(9):3175–3181

    Article  PubMed  CAS  Google Scholar 

  • Liang CY, Marchessault RH (1959) Infrared spectra of crystalline polysaccharides 2: native celluloses in the region from 640 to 1700 cm−1. J Polym Sci 39(135):269–278

    Article  CAS  Google Scholar 

  • Liu H, Zhu JY, Fu SY (2010) Effects of lignin–metal complexation on enzymatic hydrolysis of cellulose. J Agric Food Chem 58(12):7233–7238

    Article  PubMed  CAS  Google Scholar 

  • Meunier-Goddik L, Penner MH (1999) Enzyme-catalyzed saccharification of model celluloses in the presence of lignacious residues. J Agric Food Chem 47:346–351

    Article  PubMed  CAS  Google Scholar 

  • Nakagame S, Chandra RP, Saddler JN (2010) The effect of isolated lignins obtained from a range of pretreated lignocellulosic substrates on enzymatic hydrolysis. Biotechnol Bioeng 105(5):871–879

    PubMed  CAS  Google Scholar 

  • Palonen H, Tjerneld F, Zacchi G, Tenkanen M (2004) Adsorption of Trichoderma reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated lignin. J Biotechnol 107:65–72

    Article  PubMed  CAS  Google Scholar 

  • Scalbert A, Monties B, Lallemand JY, Guittet E, Rolando C (1985) Ether linkage between phenolic-acids and lignin fractions from wheat straw. Phytochemistry 24(6):1359–1362

    Article  CAS  Google Scholar 

  • Seca AML, Cavaleiro JAS, Domingues FMJ, Silvestre AJD, Evtuguin D, Neto CP (2000) Structural characterization of the lignin from the nodes and internodes of Arundo donax reed. J Agric Food Chem 48(3):817–824

    Article  PubMed  CAS  Google Scholar 

  • Selig MJ, Viamajala S, Decker SR, Tucker MP, Himmel ME, Vinzant TB (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize stems retards enzymatic hydrolysis of cellulose. Biotechnol Prog 23(6):333–1339

    Article  Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2011) Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure. National Renewable Energy Laboratory, US Department of Energy, Golden

    Google Scholar 

  • Starcher BA (2001) Ninhydrin-based assay to quantitate the total protein content of tissue samples. Anal Biochem 292(1):125–129

    Article  PubMed  CAS  Google Scholar 

  • Sun XF, Sun RC, Fowler P, Baird MS (2005) Extraction and characterization of original lignin and hemicelluloses from wheat straw. J Agric Food Chem 53(4):860–870

    Article  PubMed  CAS  Google Scholar 

  • Sweeney RA (1989) Generic combustion method for determination of crude protein in feeds—collaborative study. J Assoc Off Anal Chem 72(5):770–774

    PubMed  CAS  Google Scholar 

  • Tu MB, Pan XJ, Saddler JN (2009) Adsorption of cellulase on cellulolytic enzyme lignin from lodgepole pine. J Agric Food Chem 57(17):7771–7778

    Article  PubMed  CAS  Google Scholar 

  • Wiles PG, Gray IK, Kissling RC (1998) Routine analysis of proteins by Kjeldahl and Dumas methods: review and interlaboratory study using dairy products. J AOAC Int 81(3):620–632

    PubMed  CAS  Google Scholar 

  • Xyla AG, Koutsoukos PG (1989) Quantitative analysis of calcium carbonate polymorphs by infrared spectroscopy. J Chem Soc Faraday Trans 85:3165–3172

    Article  CAS  Google Scholar 

  • Yang B, Wyman CE (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol Bioeng 86(1):88–95

    Article  PubMed  CAS  Google Scholar 

  • Yang B, Wyman CE (2006) BSA treatment to enhance enzymatic hydrolysis of cellulose in lignin containing substrates. Biotechnol Bioeng 94(4):611–617

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Joseph Selig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barsberg, S., Selig, M.J. & Felby, C. Impact of lignins isolated from pretreated lignocelluloses on enzymatic cellulose saccharification. Biotechnol Lett 35, 189–195 (2013). https://doi.org/10.1007/s10529-012-1061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-1061-x

Keywords

Navigation