Skip to main content
Log in

Expression of a secretory β-glucosidase from Trichoderma reesei in Pichia pastoris and its characterization

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

A β-glucosidase gene (bglI) from Trichoderma reesei was cloned into the pPIC9 vector and integrated into the genome of Pichia pastoris GS115. Under the control of the methanol-inducible alcohol oxidase (AOX) promoter and using Saccharomyces cerevisiae secretory signal peptide (α-factor), the recombinant β-glucosidase was expressed and secreted into the culture medium. The maximum recombinant β-glucosidase activity achieved was 60 U/ml, and β-glucosidase expression reached 0.3 mg/ml. The recombinant 76 kDa β-glucosidase was purified 1.8-fold with 26% yield and a specific activity of 197 U/mg. It was optimally active at 70°C and pH 5.0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andrić P, Meyer AS, Jensen PA, Dam-Johansen K (2010) Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnol Adv 28:308–324

    Article  PubMed  Google Scholar 

  • Benoliel B, Pocas-Fonseca MJ, Torres FA, de Moraes LM (2010) Expression of a glucose-tolerant beta-glucosidase from Humicola grisea var. thermoidea in Saccharomyces cerevisiae. Appl Biochem Biotechnol 160:2036–2044

    Article  PubMed  CAS  Google Scholar 

  • Bhiri F, Chaabouni SE, Limam F, Ghrir R, Marzouki N (2008) Purification and biochemical characterization of extracellular β-glucosidases from the hypercellulolytic Pol6 mutant of Penicillium occitanis. Appl Biochem Biotechnol 149:169–182

    Article  PubMed  CAS  Google Scholar 

  • Chen HM, Zhao L (2009) Purification and characterization of β-glucosidase from Bacillus. J Agric Univ Hebei 32:39–43

    CAS  Google Scholar 

  • Collins CM, Murray PG, Denman S, Morrissey JP, Byrnes L, Teeri TT, Tuohy MG (2007) Molecular cloning and expression analysis of two distinct beta-glucosidase genes, bg1 and aven1, with very different biological roles from the thermophilic, saprophytic fungus Talaromyces emersonii. Mycol Res 111:840–849

    Article  PubMed  CAS  Google Scholar 

  • Decker CH, Visser J, Schreier P (2000) Beta-glucosidases from five black Aspergillus species: Study of their physico-chemical and biocatalytic properties. J Agric Food Chem 48:4929–4936

    Article  PubMed  CAS  Google Scholar 

  • Guo H, Y-Nan Bion, Liu R, Zhang M, Huang WD (2010) Enzymatic characterization of a novel glucose-tolerant β-glucosidase from Agrobacterium tumefaciens. Microbiol China 37:1356–1361

    CAS  Google Scholar 

  • Herpoël-Gimbert I, Margeot A, Dolla A, Jan G, Molle D, Lignon S, Mathis H, Sigoillot JC, Monot F, Asther M (2008) Comparison secretome analysis of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol Biofuels 1:1–18

    Article  Google Scholar 

  • Hong J, Tamaki H, Kumagai H (2007) Cloning and functional expression of thermostable beta-glucosidase gene from Thermoascus aurantiacus. Appl Microbiol Biotechnol 73:1331–1339

    Article  PubMed  CAS  Google Scholar 

  • Kovács K, Megyeri L, Szakacs G (2008) Trichoderma atroviride mutants with enhanced production of cellulase and β-glucosidase on pretreated willow. Enzym Microb Technol 43:48–55

    Article  Google Scholar 

  • Kubicek CP (1981) Release of carboxymethylcellulose and β-glucosidase from cell walls of Trichoderma reesei. Eur J Appl Microb Biotechnol 13:226–231

    Article  CAS  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  PubMed  CAS  Google Scholar 

  • Li H, Gao L (2007) Research advance on methods of determining glucosidase activity. J Food Sci Biotechnol 26:107–114

    Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  PubMed  CAS  Google Scholar 

  • Mach RL, Seiboth B, Myasnikov A, Gonzalez R, Strauss J, Harkki AM, Kubicek CP (1995) The bgl1 gene of Trichoderma reesei QM9414 encodes an extracellular, cellulose-inducible β-glucosidase involved in cellulase induction by sophorose. Mol Microbiol 16:687–697

    Article  PubMed  CAS  Google Scholar 

  • Mekoo JLD et al (2010) Molecular cloning and expression of a synthetic gene encoding a β-glucosidase of Aspergillus niger in the methylotrophic yeast Pichia pastoris. Int J Biol 2:40–49

    CAS  Google Scholar 

  • Spano G, Rinaldi A, Ugliano M, Moio L, Beneduce L, Massa S (2005) A beta-glucosidase gene isolated from wine Lactobacillus plantarum is regulated by abiotic stresses. J Appl Microbiol 98:855–861

    Article  PubMed  CAS  Google Scholar 

  • Zhao X, Qu Y, Gao P (1993) Acceleration of ethanol production from paper mill waste fiber by supplementation with beta-glucosidase. Enzym Microb Technol 15:62–65

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiu-Yun Ye.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, P., Fu, X., Ng, T.B. et al. Expression of a secretory β-glucosidase from Trichoderma reesei in Pichia pastoris and its characterization. Biotechnol Lett 33, 2475–2479 (2011). https://doi.org/10.1007/s10529-011-0724-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-011-0724-3

Keywords

Navigation