Skip to main content

Advertisement

Log in

Thermotolerant and thermostable laccases

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Laccases are phenol-oxidizing, usually four-copper containing metalloenzymes. For industrial and biotechnological purposes, laccases were among the first fungal oxidoreductases providing larger-scale applications such as removal of polyphenols in wine and beverages, conversion of toxic compounds and textile dyes in waste waters, and in bleaching and removal of lignin from wood and non-wood fibres. In order to facilitate novel and more efficient bio-catalytic process applications, there is a need for laccases with improved biochemical properties, such as thermostability and thermotolerance. This review gives a current overview on the sources and characteristics of such laccases, with particular emphasis on the fungal enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ABTS, 2:

2-Azinobis(3-ethylbenz-thiazoline-6-sulfonate)

2,6-DMP:

2,6-Dimethoxyphenol

GUA:

Guaiacol (2-methoxyphenol)

MCO:

Multicopper oxidase

SGZ:

Syringaldazine (4-hydroxy-3,5-dimethoxybenzaldehyde azine)

References

  • Alexandre G, Zhulin IB (2000) Laccases are widespread in bacteria. Trends Biotechnol 18:41–42

    Article  PubMed  CAS  Google Scholar 

  • Baldrian P (2004) Purification and characterization of laccase from the white-rot fungus Daedalea quercina and decolorization of synthetic dyes by the enzyme. Appl Microb Biotechnol 63:560–563

    Article  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases—occurence and properties. FEMS Microbiol Rev 30:215–242

    Article  PubMed  CAS  Google Scholar 

  • Berka RM, Schneider P, Golightly EJ, Brown SH, Madden M, Brown KM, Halkier T, Mondorf K, Xu F (1997) Characterization of the gene encoding an extracellular laccase of Myceliophthora thermophila and analysis of the recombinant enzyme expressed in Aspergillus oryzae. Appl Environ Microbiol 63:3151–3157

    PubMed  CAS  Google Scholar 

  • Bertrand T, Jolivalt C, Briozzo P, Caminade E, Joly N, Madzak C, Mougin C (2002) Crystal structure of a four-copper laccase complexed with an arylamine: insights into substrate recognition and correlation with kinetics. Biochemistry 41:7325–7333

    Article  PubMed  CAS  Google Scholar 

  • Bonomo RP, Cennamo G, Purrello R, Santoro AM, Zappala R (2001) Comparison of three fungal laccases from Rigidoporus lignosus and Pleurotus ostreatus: correlation between conformation changes and catalytic activity. J Inorg Biochem 83:67–75

    Article  PubMed  CAS  Google Scholar 

  • Call HP, Mücke I (1997) History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems (Lignozym®-process). J Biotechnol 53:163–202

    Article  CAS  Google Scholar 

  • Calvo AM, Copa-Patiño JL, Alonso O, Gonzáles AE (1998) Studies of the production and characterization of laccase activity in the basidiomycete Coriolopsis gallica, an efficient decolorizer of alkaline effluents. Arch Microbiol 171:31–36

    Article  PubMed  CAS  Google Scholar 

  • Chefetz B, Chen Y, Hadar Y (1998) Purification and characterization of laccase from Chaetomium thermophilium and its role in humification. Appl Environ Microbiol 64:3175–3179

    PubMed  CAS  Google Scholar 

  • Chernykh A, Myasoedova N, Kolomytseva M, Ferraroni M, Briganti F, Scozzafava A, Golovleva L (2008) Laccase isoforms with unusual properties from the basidiomycete Steccherinum ochraceum 1833. J Appl Microbiol 105:2065–2075

    Article  PubMed  CAS  Google Scholar 

  • Cherry JR, Fidantsef AL (2003) Directed evolution of industrial enzymes: an update. Curr Opin Biotechnol 14:438–443

    Article  PubMed  CAS  Google Scholar 

  • Claus H (2003) Laccases and their occurence in prokaryotes. Arch Microbiol 179:145–150

    PubMed  CAS  Google Scholar 

  • Coll PM, Fernández-Abalos JM, Villanueva JR, Santamaría R, Pérez P (1993) Purification and characterization of a phenoloxidase (laccase) from the lignin-degrading basidiomycete PM1 (CECT 2971). Appl Environ Microbiol 59:2607–2613

    PubMed  CAS  Google Scholar 

  • Dahiya JS, Singh D, Nigam P (1998) Characterisation of laccase produced by Coniothyrium minitans. J Basic Microbiol 38:349–359

    Article  CAS  Google Scholar 

  • Dantán-González E, Vite-Vallejo O, Martínez-Anaya C, Méndez-Sánchez M, González MC, Palomares LA, Folch-Mallol J (2008) Production of two novel laccase isoforms by a thermotolerant strain of Pycnoporus sanguineus isolated from an oil-polluted tropical habitat. Int Microbiol 11:163–169

    PubMed  Google Scholar 

  • De Souza CGM, Peralta RM (2003) Purification and characterization of the main laccase produced by the white-rot fungus Pleurotus pulmonarius on wheat bran solid state medium. J Basic Microbiol 43:278–286

    Article  Google Scholar 

  • Dedeyan B, Klonowska A, Tagger S, Tron T, Iacazio G, Gil G, Le Petit J (2000) Biochemical and molecular characterization of a laccase from Marasmius quercophilus. Appl Environ Microbiol 66:925–929

    Article  PubMed  CAS  Google Scholar 

  • Diamantidis G, Effosse A, Potier P, Bally R (2000) Purification and characterization of the first bacterial laccase in the rhizospheric bacterium Azospirillum lipoferum. Soil Biol Biochem 32:919–927

    Article  CAS  Google Scholar 

  • Dong JL, Zhang YZ (2004) Purification and characterization of two laccase isoenzymes from a ligninolytic fungus Trametes gallica. Prep Biochem Biotech 34:179–194

    Article  CAS  Google Scholar 

  • Ducros V, Brzozowski AM, Wilson KS, Brown SH, Östergaard P, Schneider P, Yaver DS, Pedersen AH, Davies GJ (1998) Crystal structure of the type-2 Cu depleted laccase from Coprinus cinereus at 2.2 Å resolution. Nat Struct Biol 5:310–316

    Article  PubMed  CAS  Google Scholar 

  • Eggert C, Temp U, Eriksson K-EL (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62:1151–1158

    PubMed  CAS  Google Scholar 

  • Eijsink VGH, Gåseidnes S, Borchert TV, van den Burg B (2005) Directed evolution of enzyme stability. Biomol Eng 22:21–30

    Article  PubMed  CAS  Google Scholar 

  • Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) Crystal structure of a bacterial endospore coat component. J Biol Chem 278:19416–19425

    Article  PubMed  CAS  Google Scholar 

  • Farnet AM, Criquet S, Tagger S, Gil G, Le Petit J (2000) Purification, partial characterization, and reactivity with aromatic compounds of two laccases from Marasmius quercophilus strain 17. Can J Microbiol 46:189–194

    Article  PubMed  CAS  Google Scholar 

  • Farnet AM, Criquet S, Pocachard E, Gil G, Ferre E (2002) Purification of a novel isoform of laccase from a Marasmius quercophilus strain isolated from a cork oak litter (Quercus suber L.). Mycologia 94:735–740

    Article  CAS  Google Scholar 

  • Farnet AM, Criquet S, Cigna M, Gil G, Ferré E (2004) Purification of a laccase from Marasmius quercophilus induced with ferrulic acid: reactivity towards natural and xenobiotic aromatic compounds. Enzyme Microb Technol 34:549–554

    Article  CAS  Google Scholar 

  • Fernandes AT, Soares CM, Pereira MM, Huber R, Grass G, Martins LO (2007) A robust metallo-oxidase from the hyperthermophilic bacterium Aquifex aeolicus. FEBS J 274:2683–2694

    Article  PubMed  CAS  Google Scholar 

  • Ferraroni M, Duchi I, Myasoedova NM, Leontievsky AA, Golovleva LA, Scozzafava A, Briganti F (2005) Crystallization and preliminary structure analysis of the blue laccase from the ligninolytic fungus Panus tigrinus. Acta Cryst F61:205–207

    CAS  Google Scholar 

  • Festa G, Autore F, Fraternali F, Giardina P, Sannia G (2008) Development of new laccases by directed evolution: functional and computational analyses. Proteins 72:25–34

    Article  PubMed  CAS  Google Scholar 

  • Fukushima Y, Kirk K (1995) Laccase component of the Ceriporiopsis subvermispora lignin-degrading system. Appl Environ Microbiol 61:872–876

    PubMed  CAS  Google Scholar 

  • Galhaup C, Goller S, Peterbauer CK, Strauss J, Haltrich D (2002) Characterization of the major laccase isoenzyme from Trametes pubescens and regulation of its synthesis by metal ions. Microbiology 148:2159–2169

    PubMed  CAS  Google Scholar 

  • Garavaglia S, Teresa CM, Miglio M, Ragusa S, Iacobazzi V, Palmieri F, D’Ambrosio C, Scaloni A, Rizzi M (2004) The structure of Rigidoporus lignosus laccase containing a full complement of copper ions, reveals an asymmetrical arrangement for the T3 copper pair. J Mol Biol 342:1519–1531

    Article  PubMed  CAS  Google Scholar 

  • Garcia TA, Santiago MF, Ulhoa CJ (2007) Studies on the Pycnoporus sanguineus CCT-4518 laccase purified by hydrophobic interaction chromatography. Appl Microbiol Biotechnol 75:311–318

    Article  PubMed  CAS  Google Scholar 

  • Glazer AN, Nikaido H (2007) Microbial biotechnology: fundamentals of applied microbiology. Cambridge University Press, New York

    Google Scholar 

  • Godfrey T, West SI (1996) Introduction to industrial enzymology. In: Godfrey T, West SI (eds) Industrial enzymology. Macmillan Press Ltd, Basingstoke, UK, pp 3–8

    Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Biores Tech 89:17–34

    Article  CAS  Google Scholar 

  • Hakulinen N, Kiiskinen L-L, Kruus K, Saloheimo M, Paananen A, Koivula A, Rouvinen J (2002) Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site. Nat Struct Biol 9:601–605

    PubMed  CAS  Google Scholar 

  • Hakulinen N, Andberg M, Kallio J, Koivula A, Kruus K, Rouvinen J (2008) A near atomic resolution structure of a Melanocarpus albomyces laccase. J Struct Biol 162:29–39

    Article  PubMed  CAS  Google Scholar 

  • Hatakka A (2001) Biodegradation of lignin. In: Hofrichter M, Steinbüchel A (eds) Biopolymers. Wiley-VCH, Weinheim, Germany, pp 129–180

    Google Scholar 

  • Hildén K, Hakala TK, Maijala P, Lundell TK, Hatakka A (2007) Novel thermotolerant laccases produced by the white-rot fungus Physisporinus rivulosus. Appl Microb Biotechnol 77:301–309

    Article  CAS  Google Scholar 

  • Hoegger PJ, Kilaru S, James TY, Thacker JR, Kües U (2005) Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences. FEBS J 273:2308–2326

    Article  CAS  Google Scholar 

  • Jaouani A, Guillén F, Pennickx MJ, Martínez AT, Martínez MJ (2005) Role of Pycnoporus coccineus laccase in the degradation of aromatic compounds in olive oil mill wastewater. Enzyme Microb Technol 36:478–486

    Article  CAS  Google Scholar 

  • Jordaan J, Leukes WD (2003) Isolation of a thermostable laccase with DMAB and MBTH oxidative coupling activity from a mesophilic white rot fungi. Enzyme Microb Technol 33:212–219

    Article  CAS  Google Scholar 

  • Kiiskinen L-L (2005) Characterization and heterologous production of a novel laccase from Melanocarpus albomyces. Doctoral thesis, VTT Publications 556. VTT, Espoo, Finland

  • Kiiskinen L-L, Viikari L, Kruus K (2002) Purification and characterization of a novel laccase from the ascomycete Melanocarpus albomyces. Appl Microb Biotechnol 59:198–204

    Article  CAS  Google Scholar 

  • Kiiskinen L-L, Rättö M, Kruus K (2004) Screening for novel laccase-producing microbes. J Appl Microbiol 97:640–646

    Article  PubMed  CAS  Google Scholar 

  • Koroleva OV, Stepanova EV, Binukov VI, Timofeev VP, Pfeil W (2001) Temperature-induced changes in copper centers and protein conformation of two fungal laccases from Coriolus hirsutus and Coliolus zonatus. Biochim Biophys Acta 1547:397–407

    PubMed  CAS  Google Scholar 

  • Koschorreck K, Richter SM, Ene AB, Roduner E, Schmid RD, Urlacher VB (2008a) Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microb Biotechnol 79:217–224

    Article  CAS  Google Scholar 

  • Koschorreck K, Richter SM, Swierczek A, Beifuss U, Schmid RD, Urlacher VB (2008b) Comparative characterization of four laccases from Trametes versicolor concerning phenolic C-C coupling and oxidation of PAHs. Arch Biochem Biophys 474:213–219

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Nussinov R (2001) How do thermophilic proteins deal with the heat? Cell Mol Life Sci 58:1216–1233

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tsai C-J, Nussinov R (2000) Factors enhancing protein thermostability. Prot Eng 13:179–191

    Article  CAS  Google Scholar 

  • Li WF, Zhou XX, Lu P (2005) Structural features of thermozymes. Biotech Adv 23:271–281

    Article  CAS  Google Scholar 

  • Litthauer D, Jansen van Vuuren M, van Tonder A, Wolfaardt FW (2007) Purification and kinetics of a thermostable laccase from Pycnoporus sanguineus (SCC 108). Enzyme Microb Technol 40:563–568

    Article  CAS  Google Scholar 

  • Lyashenko AV, Bento I, Zaitsev VN, Zhukhlistova NE, Zhukova YN, Gabdoulkhakov AG, Morgunova EY, Voelter W, Kachalova GS, Stepanova EV, Koroleva OV, Lamzin VS, Tishkov VI, Betzel C, Lindley PF, Mikhailov AM (2006) X-ray structural studies of the fungal laccase from Cerrena maxima. J Biol Inorg Chem 11:963–973

    Article  PubMed  CAS  Google Scholar 

  • Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO (2002) Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J Biol Chem 277:18849–18859

    Article  PubMed  CAS  Google Scholar 

  • Mayer AM, Staples RC (2002) Laccase: new functions for an old enzyme. Phytochemistry 60:551–565

    Article  PubMed  CAS  Google Scholar 

  • Michniewicz A, Ullrich R, Ledakowicz S, Hofrichter M (2006) The white-rot fungus Cerrena unicolor strain 137 produces two laccase isoforms with different physico-chemical and catalytic properties. Appl Microb Biotechnol 69:682–688

    Article  CAS  Google Scholar 

  • Minussi RC, Pastore GM, Durán N (2002) Potential applications of laccase in the food industry. Trends Food Sci Technol 13:205–216

    Article  CAS  Google Scholar 

  • Miyazaki K (2005) A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles 9:415–425

    Article  PubMed  CAS  Google Scholar 

  • Morozova OV, Shumakovich GP, Gorbacheva MA, Shleev SV, Yaropolov AI (2007a) “Blue” laccases. Biochemistry (Moscow) 72:1136–1412

    Article  CAS  Google Scholar 

  • Morozova OV, Shumakovich GP, Shleev SV, Yaropolov YI (2007b) Laccase-mediator systems and their applications: a review. Appl Biochem Microbiol 43:523–535

    Article  CAS  Google Scholar 

  • Muñoz C, Guillén F, Martínez AT, Martínez MJ (1997) Laccase isoenzymes of Pleurotus eryngii: characterization, catalytic properties, and participation in activation of molecular oxygen and Mn2+ oxidation. Appl Environ Microbiol 63:2166–2174

    PubMed  Google Scholar 

  • Murugesan K, Nam I-H, Kim Y-M, Chang Y-S (2007) Decolorization of reactive dyes by a thermostable laccase produced by Ganoderma lucidum in solid state culture. Enzyme Microb Technol 40:1662–1672

    Article  CAS  Google Scholar 

  • Niku-Paavola M-L, Fagerström R, Kruus K, Viikari L (2004) Thermostable laccases produced by a white-rot fungus from Peniophora species. Enzyme Microb Technol 35:100–102

    Article  CAS  Google Scholar 

  • Nishizawa Y, Nakabayashi K, Shinagawa E (1995) Purification and characterization of laccase from white rot fungus Trametes sanguinea M85–2. J Ferment Bioeng 80:91–93

    Article  CAS  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G (1997) A novel white laccase from Pleurotus ostreatus. J Biol Chem 272:31301–31307

    Article  PubMed  CAS  Google Scholar 

  • Palonen H, Saloheimo M, Viikari L, Kruus K (2003) Purification, characterization and sequence analysis of a laccase from the ascomycete Mauginiella sp. Enzyme Microb Technol 33:854–862

    Article  CAS  Google Scholar 

  • Papinutti L, Dimitriu P, Forchiassin F (2008) Stabilization studies of Fomes sclerodermeus laccases. Biores Tech 99:419–424

    Article  CAS  Google Scholar 

  • Piontek K, Antorini M, Choinowski T (2002) Crystal structure of a laccase from the fungus Trametes versicolor at 1.90-Å resolution containing a full complement of coppers. J Biol Chem 277:37663–37669

    Article  PubMed  CAS  Google Scholar 

  • Pointing SB, Jones EBG, Vrijmoed LLP (2000) Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia 92:139–144

    Article  CAS  Google Scholar 

  • Ragusa S, Cambria MT, Pierfederici F, Scirè A, Bertoli E, Tanfani F, Cambria A (2002) Structure-activity relationship on fungal laccase from Rigidoporus lignosus: a Fourier-transform infrared spectroscopic study. Biochim Biophys Acta 1601:155–162

    PubMed  CAS  Google Scholar 

  • Rodriguez Couto S, Toca Herrera JL (2006) Industrial and biotechnological applications of laccases: a review. Biotechnol Adv 24:500–513

    Article  PubMed  CAS  Google Scholar 

  • Ryan S, Schnizhofer W, Tzanov T, Cavaco-Paulo A, Gübitz GM (2003) An acid-stable laccase from Sclerotium rolfsii with potential for wool dye decolourization. Enzyme Microb Technol 33:766–774

    Article  CAS  Google Scholar 

  • Sahay R, Yadav RSS, Yadav KDS (2008) Purification and characterization of laccase secreted by L. lividus. Appl Biochem Biotechnol doi: 10.1007/s12010-008-8265-5

  • Schliephake K, Mainwaring DE, Lonergan GT, Jones IK, Baker WL (2000) Transformation and degradation of the disazo dye Chicago sky blue by a purified laccase from Pycnoporus cinnabarinus. Enzyme Microb Technol 27:100–107

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Caspersen MB, Mondorf K, Halkier T, Skov LK, Ostergaard PR, Brown KM, Brown SH, Xu F (1999) Characterization of a Coprinus cinereus laccase. Enzyme Microb Technol 25:502–508

    Article  CAS  Google Scholar 

  • Slomczynski D, Nakas JP, Tanenbaum SW (1995) Production and characterization of laccase from Botrytis cinerea 61–34. Appl Environ Microbiol 61:907–912

    PubMed  CAS  Google Scholar 

  • Solomon EI, Sundaram UM, Machonkin TE (1996) Multicopper oxidases and oxygenases. Chem Rev 96:2563–2606

    Article  PubMed  CAS  Google Scholar 

  • Solomon EI, Chen P, Metz M, Lee S-K, Palmer AE (2001) Oxygen binding, activation, and reduction to water by copper proteins. Andgew Chem Int Ed 40:4570–4590

    Article  CAS  Google Scholar 

  • Sterner R, Liebl W (2001) Thermophilic adaptation of proteins. Crit Rev Biochem Mol Biol 36:39–106

    Article  PubMed  CAS  Google Scholar 

  • Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140:19–26

    Article  CAS  Google Scholar 

  • Tong P, Hong Y, Xiao Y, Zhang M, Tu X, Cui T (2007) High production of laccase by a new basidiomycete, Trametes sp. Biotechnol Lett 29:295–301

    Article  PubMed  CAS  Google Scholar 

  • Vandertol-Vanier HA, Vazquez-Duhalt R, Tinoco R, Pickard MA (2002) Enhanced activity by poly(ethylene glycol) modification of Coriolopsis gallica laccase. J Ind Microbiol Biotechnol 29:214–220

    Article  PubMed  CAS  Google Scholar 

  • Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms of thermostability. Microbiol Mol Biol Rev 65:1–43

    Article  PubMed  CAS  Google Scholar 

  • Vieille C, Burdette DS, Zeikus JG (1996) Thermozymes. Biotechnol Annu Rev 2:1–83

    Article  PubMed  CAS  Google Scholar 

  • Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269:631–643

    Article  PubMed  CAS  Google Scholar 

  • Voutilainen SP, Boer H, Linder MB, Puranen T, Rouvinen J, Vehmaanperä J, Koivula A (2007) Heterologous expression of Melanocarpus albomyces cellobiohydrolase Cel7B, and random mutagenesis to improve its thermostability. Enzyme Microb Technol 41:234–243

    Article  CAS  Google Scholar 

  • Wang HX, Ng TB (2004a) A novel laccase with fair thermostability from the edible wild mushroom (Albatrella dispansus). Biochem Biophys Res Commun 319:381–385

    Article  PubMed  CAS  Google Scholar 

  • Wang HX, Ng TB (2004b) Purification of a novel low-molecular-mass laccase with HIV-1 reverse transcriptase inhibitory activity from the mushroom Tricholoma giganteum. Biochem Biophys Res Commun 315:450–454

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Eufemi M, Turano C, Giartosio A (1996) Influence of the carbohydrate moiety on the stability of glycoproteins. Biochemistry 35:7299–7307

    Article  PubMed  CAS  Google Scholar 

  • Xiao YZ, Tu XM, Wang J, Zhang M, Cheng Q, Zeng WY, Shi YY (2003) Purification, molecular characterization and reactivity with aromatic compounds of a laccase from basidiomycete Trametes sp. strain AH28-2. Appl Microb Biotechnol 60:700–707

    CAS  Google Scholar 

  • Xu F, Shin W, Brown SH, Wahleithner JA, Sundaram UM, Solomon EI (1996) A study of a series of recombinant fungal laccases and bilirubin oxidase that exhibit significant differences in redox potential, substrate specificity, and stability. Biochim Biophys Acta 1292:303–311

    PubMed  Google Scholar 

  • Yoshida H (1883) Chemistry of lacquer (Urushi) Part 1. J Chem Soc 43:472–486

    CAS  Google Scholar 

  • Zhang M, Wu F, Wei Z, Xiao Y, Gong W (2006) Characterization and decolorization ability of a laccase from Panus rudis. Enzyme Microb Technol 39:92–97

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Academy of Finland (research Grants no 124160, and 205027 and 212303 to K·H., and no 129869 to T.L.). Nina Hakulinen (Department of Chemistry, University of Joensuu, Finland) is thanked for the 3D figure of Melanocarpus albomyces laccase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristiina Hildén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hildén, K., Hakala, T.K. & Lundell, T. Thermotolerant and thermostable laccases. Biotechnol Lett 31, 1117–1128 (2009). https://doi.org/10.1007/s10529-009-9998-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-9998-0

Keywords

Navigation