Skip to main content
Log in

Physiological activities of a β-glucan produced by Panebacillus polymyxa

  • Original Research Paper
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

In vitro bioactivities of a β-glucan produced by Panebacillus polymyxa JB115 were investigated. Nitric oxide production by RAW 264.7 macrophage cells pre-treated with β-glucan JB115 (from 0.1 to 1 mg ml−1) was significantly increased, compared to that in untreated cells (< 0.001). The β-glucan JB115 increased superoxide radical-scavenging activity by 66% at 1 mg ml−1. It also suppressed hyaluronidase (32%) and collagenase (33%) activities and, additionally, displayed antitumor activity, blocking the growth of Sarcoma 180 cells in a concentration-dependent manner. The immune-stimulatory, antioxidant, collagenase inhibitory and hyaluronidase inhibitory effects of the β-glucan support its potential role in the prevention of bacterial disease against fish and in the protection of skin against aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barrantes E, Guinea M (2003) Inhibition of collagenase and metalloproteinase by aloins and alo gel. Life Sci 72:743–850

    Article  Google Scholar 

  • Bohn JA, Bemiller JN (1995) (1→3)-β-glucans as biological response modifier: a review of structure-fuctional activity relationships. Carbohyd Polym 28:3–14

    Article  CAS  Google Scholar 

  • Cha BC, Lee EH, Cho JY (2004) lutathione S-transferae activity and hyaluronidase inhibitory effect of medicinal plants. Kor J Pharmacogn 35:184–188

    Google Scholar 

  • Choi CM, Berson DS (2006) Cosmeceuticals. Semin Cutan Med Surg 25:163–168

    Article  PubMed  CAS  Google Scholar 

  • Dore GC, Azevedo TG, Souza de MR, Rego LA, Dantas de JCM, Silva FRF, Rocha HAO, Baseia IG, Leite EL (2007) Antiinflammatory, antioxdant and cytotoxic actions of β-glucan-rich extract from Geastrum saccatum mushroom. Int Immunopharmacol 7:1160–1169

    Article  CAS  Google Scholar 

  • Grice HC (1988) Safety evaluation of butylated hydrixyanisole from the perspective of effects on fore stomach and esophageal squamous epithelium. Food Chem Toxicol 26:717–723

    Article  PubMed  CAS  Google Scholar 

  • Huang Q, Zhang L, Cheung PCK, Tan X (2006) Evaluation of sulfated glucans from Poria cocos mycelia as potential antitumor agent. Carbohyd Polym 64:337–344

    Article  CAS  Google Scholar 

  • Im SA, Kim KJ, Lee CK (2006) Immunonodularoy activity of polysaccharide isolated form Salicornia hebacea. Int Immunopharmacol 6:1451–1458

    Article  PubMed  CAS  Google Scholar 

  • Jeong SJ, Ko YS, Ahn NH, Kim YC (1998) Hyaluronidase inhibitor from Uncariae Ramulus et Uncus. Kor J Pharmacogn 29:169–172

    CAS  Google Scholar 

  • Jung HK, Hong JH, Park SC, Park BK, Nam DH, Kim SD (2007) Production and physicochemical characterization of β-glucan produced by Paenibacillus polymyxa JB115. Biotechonol Bioprocess Eng 12:713–719

    Article  CAS  Google Scholar 

  • Kang SY, Roh DH, Kim HY, Yoon SY, Kwon YB, Kweon HY, Lee KG, Park YH, Lee JH (2006) Silk fibroin/hyaluronic acid blend sponge accelerates the wound healing in full-thickness skin injury model of rat. Kor J Vet Res 46:305–313

    Google Scholar 

  • Kim YW, Kim KH, Choi HJ, Lee DS (2005) Anti-diabetic activity of β-glucans and their enzymatically hydrolyzed oligosaccharides from Agaricus blazei. Biotechnol Lett 27:483–487

    Article  PubMed  CAS  Google Scholar 

  • Kim MK, Lee IY, Ko JH, Rhee YH, Park YH (1999) Higher intracellular levels of uridinemonophosphate under nitrogen-limited conditions enhance metabolic flux of curdlan synthesis in Agrobacterium species. Biotechnol Bioeng 62:317–323

    Article  PubMed  CAS  Google Scholar 

  • Kupfahl C, Geginat G, Hof H (2006) Lentinan has a stimulatory effect on innate and adaptive immunity against murin Listeria monocytihenes infection. Int Immunopharmacol 6:686–696

    Article  PubMed  CAS  Google Scholar 

  • Lee KY, Lee MH, Chang IY, Yoon SP, Lim DY, Jeon YJ (2006) Macrophage acitivation by polysaccharide fraction isolated from Salicornia herbacea. J Ethnopharmacol 103:372–378

    Article  PubMed  CAS  Google Scholar 

  • Leung MK, Liu C, Koon J, Fung KP (2006) Polysaccharide biological response modifiers. Immunol Lett 105:101–114

    Article  PubMed  CAS  Google Scholar 

  • Li XM, Li XL, Zhou AG (2007) Evaluation of antioxidant activity of the polysaccharides extracted from Lycium barbarum fruits in vitro. Eur Polym J 43:488–497

    Article  CAS  Google Scholar 

  • Liu C, Lin Q, Gao Y, Ye L, Xing Y, Xi T (2007) Characterization and antitumor activity of a polysaccharide from Strongylocentrotus nudus eggs. Carbohyd Polym 67:313–318

    Article  CAS  Google Scholar 

  • Ljungma AG, Leanderson P, Tagesson C (1998) (1→2) β-3-D-glucan stimulated nitric oxide generation and cytokine mRNA expression in macrophages. Environ Toxicol Pharmacol 5:273–281

    Article  Google Scholar 

  • Nair R, Melinick S, Ramachandra R, Escalon E, Ramachandran C (2006) Mechanism of macrophage activation by (1,4)-α-D-glucan isolated from Tonospora cordifolia. Int Immunopharmacol 6:1815–1824

    Article  PubMed  CAS  Google Scholar 

  • Park SM, Park SI, Huh MD, Hong YK (1999) Inhibitory effects of green tea extract on collagenase activity and growth of fish pathogenic bacteria. J Fish Pathol 12:83–88

    Google Scholar 

  • Park CS, Ryu IH, Lee KS (2001) Enzymological evaluation of oral inflammation inhibitory activity by Aloe vera peels extract. Korean J Food Sci Technol 33:753–759

    Google Scholar 

  • Park HI, Sin BY, Kim HP (2006) Inhibition of collagenase by anti-inflammatory synthetic flavones. J Appl Pharmacol 14:36–39

    CAS  Google Scholar 

  • Qi HM, Zhang QB, Zhao TT, Chenc R, Zhang H, Niu XZ (2005) Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyra) in vitro. Int J Biol Macromol 37:195–199

    Article  PubMed  CAS  Google Scholar 

  • Rout D, Mondal S, Chakraboty I, Pramanik M, Islam SS (2005) Chemical analysis of a new (1→3), -β-(1→6)-branched glucan from an edible mushroom, Pleurotus florida. Carbohyd Res 340:2533–2539

    Article  CAS  Google Scholar 

  • Sandula S, Kogan G, Kacurakoca M, Machova E (1999) Microbial β-(1→3)-D-glucans, their preparation, physico-chemical characterization and immonomodulatory activity. Carbohyd Polym 38:247–253

    Article  CAS  Google Scholar 

  • Selvaraj V, Sampath K, Sekar V (2006) Adjuvant and immunostimulatory effects of β-glucan administration in combination with lipopolysaccharide ehhances survival and some immune parameters in carp challenged with Aeromonas hydrophila. Vet Immunol Immunopathol 114:15–24

    Article  PubMed  CAS  Google Scholar 

  • Sun C, Wang JW, Fang L, Gao XD, Tan RX (2004) Free radical scavenging and antioxidant activies of EPS2 an exopolysaccharide produced by a marine filamentous fungus Keissleriella sp. YS 4108. Life Sci 75:1063–1073

    Article  PubMed  CAS  Google Scholar 

  • Surenjav U, Zhang L, Xu X, Zhang X, Xeng F (2006) Effects of molecular structure on antitumor activities of (1→ 3)-β-glucans from different Lentinus Edodes. Carbohyd Polym 63:97–104

    Article  CAS  Google Scholar 

  • Tokunaka K, Ohno N, Adachi Y, Miura N, Yadomae T (2002) Applicatin of Candidia solubilized cell wall β-glucan in antitumor immonotheraphy against P815 mastocytoma in mice. Int Immunopharmacol 2:59–97

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Luo D (2007) Antioxdant activities of different fractions of polysaccharide purified from Gynostemma pentaphyllum Makino. Carbohyd Polym 68:54–58

    Article  CAS  Google Scholar 

  • Wang Y, Zhang L, Li Y, Hou X, Zeng F (2004) Correlation of structure to antitumor activities of five derivatives of a β-glucan from Poria cocos sclerotium. Carbohyd Res 339:2567–2574

    Article  CAS  Google Scholar 

  • Yang B, Wnag J, Zhao M, Liu Y, Wnag W, Jiang Y (2006) Identification of polysaccharides from pericarp tissues of litchi (Litchi chinensis Sonn.) fruit in relation to their antioxidant activities. Carbohyd Res 34:634–638

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo-Heon Hong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jung, HK., Park, SC., Park, BK. et al. Physiological activities of a β-glucan produced by Panebacillus polymyxa . Biotechnol Lett 30, 1545–1551 (2008). https://doi.org/10.1007/s10529-008-9732-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-008-9732-3

Keywords

Navigation