Skip to main content

Advertisement

Log in

Machine Learning Developed a MYC Expression Feature-Based Signature for Predicting Prognosis and Chemoresistance in Pancreatic Adenocarcinoma

  • Database Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

MYC has been identified to profoundly influence a wide range of pathologic processes in cancers. However, the prognostic value of MYC-related genes in pancreatic adenocarcinoma (PAAD) remains unclarified. Gene expression data and clinical information of PAAD patients were obtained from The Cancer Genome Atlas (TCGA) database (training set). Validation sets included GSE57495, GSE62452, and ICGC-PACA databases. LASSO regression analysis was used to develop a risk signature for survival prediction. Single-cell sequencing data from GSE154778 and CRA001160 datasets were analyzed. Functional studies were conducted using siRNA targeting RHOF and ITGB6 in PANC-1 cells. High MYC expression was found to be significantly associated with a poor prognosis in patients with PAAD. Additionally, we identified seven genes (ADGRG6, LINC00941, RHOF, SERPINB5, INSYN2B, ITGB6, and DEPDC1) that exhibited a strong correlation with both MYC expression and patient survival. They were then utilized to establish a risk model (MYCsig), which showed robust predictive ability. Furthermore, MYCsig demonstrated a positive correlation with the expression of HLA genes and immune checkpoints, as well as the chemotherapy response of PAAD. RHOF and ITGB6, expressed mainly in malignant cells, were identified as key oncogenes regulating chemosensitivity through EMT. Downregulation of RHOF and ITGB6 reduced cell proliferation and invasion in PANC-1 cells. The developed MYCsig demonstrates its potential in enhancing the management of patients with PAAD by facilitating risk assessment and predicting response to adjuvant chemotherapy. Additionally, our study identifies RHOF and ITGB6 as novel oncogenes linked to EMT and chemoresistance in PAAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, Jiankun Li, upon reasonable request.

References

  • Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 313:1960

    Google Scholar 

  • Ashrafizadeh M, Zarabi A, Hushmandi K, Moghadam E, Hashemi F, Daneshi S, Hashemi F, Tavakol S, Mohammadinejad R, Najafi M et al (2021) C-Myc Signaling pathway in treatment and prevention of brain tumors. Curr Cancer Drug Targets 21(1):2–20

    Article  CAS  PubMed  Google Scholar 

  • Bachireddy P, Rakhra K, Felsher DW (2012) Immunology in the clinic review series; focus on cancer: multiple roles for the immune system in oncogene addiction. Clin Exp Immunol 167(2):188–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC et al (2016) Genomic analyses identify molecular subtypes of pancreatic cancer. Nature 531(7592):47–52

    Article  CAS  PubMed  Google Scholar 

  • Baleeiro RB, Bouwens CJ, Liu P, Di Gioia C, Dunmall LSC, Nagano A, Gangeswaran R, Chelala C, Kocher HM, Lemoine NR et al (2022) MHC class II molecules on pancreatic cancer cells indicate a potential for neo-antigen-based immunotherapy. OncoImmunology 11(1):2080329

    Article  PubMed  PubMed Central  Google Scholar 

  • Benedikt F, Olga L, Axel K, Michael K, Thorben S, Kira B, Benjamin H, Jessica W, Kim H, Louisa B et al (2023) Molecular profiling and specific targeting of gemcitabine-resistant subclones in heterogeneous pancreatic cancer cell populations. Front Oncol 13:1230382

    Article  Google Scholar 

  • Burris HA 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P et al (1997) Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J Clin Oncol: off J Am Soc Clin Oncol 15(6):2403–2413

    Article  CAS  Google Scholar 

  • Buscail L, Bournet B, Cordelier P (2020) Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol 17(3):153–168

    Article  CAS  PubMed  Google Scholar 

  • Cao D, Qi Z, Pang Y, Li H, Xie H, Wu J, Huang Y, Zhu Y, Shen Y, Zhu Y et al (2019) Retinoic acid-related orphan receptor C regulates proliferation, glycolysis, and chemoresistance via the PD-L1/ITGB6/STAT3 signaling axis in bladder cancer. Cancer Res 79(10):2604–2618

    Article  CAS  PubMed  Google Scholar 

  • Chien W, Sudo M, Ding LW, Sun QY, Wuensche P, Lee KL, Hattori N, Garg M, Xu L, Zheng Y et al (2018) Functional genome-wide screening identifies targets and pathways sensitizing pancreatic cancer cells to dasatinib. J Cancer 9(24):4762–4773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardière C et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364(19):1817–1825

    Article  CAS  PubMed  Google Scholar 

  • Conroy T, Hammel P, Hebbar M, Ben Abdelghani M, Wei AC, Raoul JL, Choné L, Francois E, Artru P, Biagi JJ et al (2018) FOLFIRINOX or gemcitabine as adjuvant therapy for pancreatic cancer. N Engl J Med 379(25):2395–2406

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Yu W, Yu M, Luo Y, Yang M, Cong R, Chu X, Gao G, Zhong M (2021) GPR126 regulates colorectal cancer cell proliferation by mediating HDAC2 and GLI2 expression. Cancer Sci 112(5):1798–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang CV, Le A, Gao P (2009) MYC-induced cancer cell energy metabolism and therapeutic opportunities. Clin Cancer Res: off J Am Assoc Cancer Res 15(21):6479–6483

    Article  CAS  Google Scholar 

  • Fang L, Wang SH, Cui YG, Huang L (2021) LINC00941 promotes proliferation and metastasis of pancreatic adenocarcinoma by competitively binding miR-873-3p and thus upregulates ATXN2. Eur Rev Med Pharmacol Sci 25(4):1861–1868

    CAS  PubMed  Google Scholar 

  • Färber B, Lapshyna O, Künstner A, Kohl M, Sauer T, Bichmann K, Heckelmann B, Watzelt J, Honselmann K, Bolm L et al (2023) Molecular profiling and specific targeting of gemcitabine-resistant subclones in heterogeneous pancreatic cancer cell populations. Front Oncol 13:1230382

    Article  PubMed  PubMed Central  Google Scholar 

  • Farrell AS, Joly MM, Allen-Petersen BL, Worth PJ, Lanciault C, Sauer D, Link J, Pelz C, Heiser LM, Morton JP et al (2017) MYC regulates ductal-neuroendocrine lineage plasticity in pancreatic ductal adenocarcinoma associated with poor outcome and chemoresistance. Nat Commun 8(1):1728

    Article  PubMed  PubMed Central  Google Scholar 

  • Gabay M, Li Y, Felsher DW (2014) 2014 MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harbor Perspect Med 4(6):a014241

    Article  Google Scholar 

  • Gamberi G, Benassi MS, Böhling T, Ragazzini P, Molendini L, Sollazzo MR, Merli M, Ferrari C, Magagnoli G, Bertoni F et al (1998) Prognostic relevance of C-myc gene expression in giant-cell tumor of bone. J Orthop Res: off Publ Orthop Res Soc 16(1):1–7

    Article  CAS  Google Scholar 

  • Grasso C, Jansen G, Giovannetti E (2017) Drug resistance in pancreatic cancer: impact of altered energy metabolism. Crit Rev Oncol/hematol 114:139–152

    Article  PubMed  Google Scholar 

  • Han B, Kim BJ, Kim HS, Choi DR, Shim BY, Lee KH, Kim JW, Kim JH, Song H, Kim JH et al (2021) A phase II study of gemcitabine, erlotinib and S-1 in patients with advanced pancreatic cancer. J Cancer 12(3):912–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hessmann E, Schneider G, Ellenrieder V, Siveke JT (2016) MYC in pancreatic cancer: novel mechanistic insights and their translation into therapeutic strategies. Oncogene 35(13):1609–1618

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Weiss WA (2013) Neuroblastoma and MYCN. Cold Spring Harb Perspect Med 3(10):a014415

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang J, Hwang I, Yoo C, Kim KP, Jeong JH, Chang HM, Lee SS, Park DH, Song TJ, Seo DW et al (2018) Nab-paclitaxel plus gemcitabine versus FOLFIRINOX as the first-line chemotherapy for patients with metastatic pancreatic cancer: retrospective analysis. Invest New Drugs 36(4):732–741

    Article  CAS  PubMed  Google Scholar 

  • Kirtonia A, Pandey AK, Ramachandran B, Mishra DP, Dawson DW, Sethi G, Ganesan TS, Koeffler HP, Garg M (2022) Overexpression of laminin-5 gamma-2 promotes tumorigenesis of pancreatic ductal adenocarcinoma through EGFR/ERK1/2/AKT/mTOR cascade. Cell Mol Life Sci 79(7):362

    Article  CAS  PubMed  Google Scholar 

  • Kleeff J, Korc M, Apte M, La Vecchia C, Johnson CD, Biankin AV, Neale RE, Tempero M, Tuveson DA, Hruban RH et al (2016) Pancreatic cancer. Nat Rev Dis Prim 2:16022

    Article  PubMed  Google Scholar 

  • Korc M (2018) Beyond Kras: MYC rules in pancreatic cancer. Cell Mol Gastroenterol Hepatol 6(2):223–224

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuwada K, Kagawa S, Yoshida R, Sakamoto S, Ito A, Watanabe M, Ieda T, Kuroda S, Kikuchi S, Tazawa H et al (2018) The epithelial-to-mesenchymal transition induced by tumor-associated macrophages confers chemoresistance in peritoneally disseminated pancreatic cancer. J Exp Clin Cancer Res. https://doi.org/10.1186/s13046-018-0981-2

    Article  PubMed  PubMed Central  Google Scholar 

  • Leidner R, Sanjuan Silva N, Huang H, Sprott D, Zheng C, Shih Y-P, Leung A, Payne R, Sutcliffe K, Cramer J et al (2022) Neoantigen T-cell receptor gene therapy in pancreatic cancer. New Eng J Med 386(22):3112–3119

    Article  Google Scholar 

  • Li D, Xie K, Wolff R, Abbruzzese JL (2004) Pancreatic cancer. Lancet 363(9414):1049–1057

    Article  CAS  PubMed  Google Scholar 

  • Li S, Liu Y, Bai Y, Chen M, Cheng D, Wu M, Xia J (2020) RHOF promotes hepatocellular carcinoma metastasis by altering the metabolic status of cancer cells via RAB3D. Hepatology 73(6):2361–2379

    Article  Google Scholar 

  • Lin F, Li X, Wang X, Sun H, Wang Z, Wang X (2022) Stanniocalcin 1 promotes metastasis, lipid metabolism and cisplatin chemoresistance via the FOXC2/ITGB6 signaling axis in ovarian cancer. J Exp Clin Cancer Res. https://doi.org/10.1186/s13046-022-02315-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):1–21

    Article  Google Scholar 

  • Maddipati R, Norgard RJ, Baslan T, Rathi KS, Zhang A, Saeid A, Higashihara T, Wu F, Kumar A, Annamalai V et al (2022) MYC levels regulate metastatic heterogeneity in pancreatic adenocarcinoma. Cancer Discov 12(2):542–561

    Article  CAS  PubMed  Google Scholar 

  • McBride A, Bonafede M, Cai Q, Princic N, Tran O, Pelletier C, Parisi M, Patel M (2017) Comparison of treatment patterns and economic outcomes among metastatic pancreatic cancer patients initiated on nab-paclitaxel plus gemcitabine versus FOLFIRINOX. Expert Rev Clin Pharmacol 10(10):1153–1160

    Article  CAS  PubMed  Google Scholar 

  • Mizrahi JD, Surana R, Valle JW, Shroff RT (2020) Pancreatic cancer. Lancet 395(10242):2008–2020

    Article  CAS  PubMed  Google Scholar 

  • Nagaraju GP, Farran B, Luong T, El-Rayes BF (2022) Understanding the molecular mechanisms that regulate pancreatic cancer stem cell formation, stemness and chemoresistance: a brief overview. Semin Cancer Biol 88:67–80

    Article  PubMed  Google Scholar 

  • Neoptolemos JP, Stocken DD, Friess H, Bassi C, Dunn JA, Hickey H, Beger H, Fernandez-Cruz L, Dervenis C, Lacaine F et al (2004) A randomized trial of chemoradiotherapy and chemotherapy after resection of pancreatic cancer. N Engl J Med 350(12):1200–1210

    Article  CAS  PubMed  Google Scholar 

  • Neoptolemos JP, Stocken DD, Bassi C, Ghaneh P, Cunningham D, Goldstein D, Padbury R, Moore MJ, Gallinger S, Mariette C et al (2010) Adjuvant chemotherapy with fluorouracil plus folinic acid vs gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA 304(10):1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Neoptolemos JP, Palmer DH, Ghaneh P, Psarelli EE, Valle JW, Halloran CM, Faluyi O, O’Reilly DA, Cunningham D, Wadsley J et al (2017) Comparison of adjuvant gemcitabine and capecitabine with gemcitabine monotherapy in patients with resected pancreatic cancer (ESPAC-4): a multicentre, open-label, randomised, phase 3 trial. The Lancet 389(10073):1011–1024

    Article  CAS  Google Scholar 

  • Nesbit CE, Tersak JM, Prochownik EV (1999) MYC oncogenes and human neoplastic disease. Oncogene 18(19):3004–3016

    Article  CAS  PubMed  Google Scholar 

  • Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandya G, Kirtonia A, Sethi G, Pandey AK, Garg M (2020) The implication of long non-coding RNAs in the diagnosis, pathogenesis and drug resistance of pancreatic ductal adenocarcinoma and their possible therapeutic potential. Biochim Biophys Acta Rev Cancer 1874(2):188423

    Article  CAS  PubMed  Google Scholar 

  • Pandya G, Kirtonia A, Singh A, Goel A, Mohan CD, Rangappa KS, Pandey AK, Kapoor S, Tandon S, Sethi G et al (2022) A comprehensive review of the multifaceted role of the microbiota in human pancreatic carcinoma. Semin Cancer Biol 86(Pt 3):682–692

    Article  CAS  PubMed  Google Scholar 

  • Peixoto RD, Ho M, Renouf DJ, Lim HJ, Gill S, Ruan JY, Cheung WY (2017) Eligibility of metastatic pancreatic cancer patients for first-line palliative intent nab-paclitaxel plus gemcitabine versus FOLFIRINOX. Am J Clin Oncol 40(5):507–511

    Article  CAS  PubMed  Google Scholar 

  • Phua LC, Goh S, Tai DWM, Leow WQ, Alkaff SMF, Chan CY, Kam JH, Lim TKH, Chan ECY (2018) Metabolomic prediction of treatment outcome in pancreatic ductal adenocarcinoma patients receiving gemcitabine. Cancer Chemother Pharmacol 81(2):277–289

    Article  CAS  PubMed  Google Scholar 

  • Qiu Z, Wang X, Ji X, Jiang F, Han X, Zhang W, An Y (2022) The clinical relevance of epithelial-mesenchymal transition and its correlations with tumorigenic immune infiltrates in hepatocellular carcinoma. Immunology 166(2):185–196

    Article  CAS  PubMed  Google Scholar 

  • Reni M, Balzano G, Zanon S, Zerbi A, Rimassa L, Castoldi R, Pinelli D, Mosconi S, Doglioni C, Chiaravalli M et al (2018) Safety and efficacy of preoperative or postoperative chemotherapy for resectable pancreatic adenocarcinoma (PACT-15): a randomised, open-label, phase 2–3 trial. Lancet Gastroenterol Hepatol 3(6):413–423

    Article  PubMed  Google Scholar 

  • Roussel MF, Robinson GW (2013) Role of MYC in Medulloblastoma. Cold Spring Harbor Perspect Med 3(11):a014308

    Article  Google Scholar 

  • Schmitz R, Ceribelli M, Pittaluga S, Wright G, Staudt LM (2014) Oncogenic mechanisms in Burkitt lymphoma. Cold Spring Harbor Perspect Med 4(2):a014282

    Article  Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics. CA: A Cancer J Clin 71(1):7–33

    Google Scholar 

  • Singh H, Keller R, Kapner K, Dilly J, Raghavan S, Yuan C, Cohen E, Tolstorukov M, Andrews E, Brais L et al (2023) Oncogenic drivers and therapeutic vulnerabilities in KRAS wild-type pancreatic cancer. Clin Cancer Res: off J Am Assoc Cancer Res 29(22):4627–4623

    Article  CAS  Google Scholar 

  • Sivakumar S, Abu-Shah E, Ahern D, Mangal N, Reddy S, Rendek A, Silva M, Soonawalla Z, Middleton M, Dustin M (2019) The T cell architecture of pancreatic ductal adenocarcinoma. Annals Oncol 30:iv64

    Article  Google Scholar 

  • Song W, He X, Gong P, Yang Y, Huang S, Zeng Y, Wei L, Zhang J (2021) Glycolysis-related gene expression profiling screen for prognostic risk signature of pancreatic ductal adenocarcinoma. Front Genet 12:639246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strickler JH, Satake H, George TJ, Yaeger R, Hollebecque A, Garrido-Laguna I, Schuler M, Burns TF, Coveler AL, Falchook GS et al (2020) Sotorasib in KRAS p.G12C–mutated advanced pancreatic cancer. New Eng J Med 388(1):33–43

    Article  Google Scholar 

  • Tessier-Cloutier B, Kalloger SE, Al-Kandari M, Milne K, Gao D, Nelson BH, Renouf DJ, Sheffield BS, Schaeffer DF (2017) Programmed cell death ligand 1 cut-point is associated with reduced disease specific survival in resected pancreatic ductal adenocarcinoma. BMC Cancer. https://doi.org/10.1186/s12885-017-3634-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Tian C, Öhlund D, Rickelt S, Lidström T, Huang Y, Hao L, Zhao RT, Franklin O, Bhatia SN, Tuveson DA et al (2020) Cancer cell-derived matrisome proteins promote metastasis in pancreatic ductal adenocarcinoma. Can Res 80(7):1461–1474

    Article  CAS  Google Scholar 

  • Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, Johns AL, Miller D, Nones K, Quek K, Quinn MC (2015) Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 518(7540):495–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, He Z, Xu J, Chen P, Jiang J (2021) Long noncoding RNA LINC00941 promotes pancreatic cancer progression by competitively binding miR-335-5p to regulate ROCK1-mediated LIMK1/Cofilin-1 signaling. Cell Death Dis 12(1):36

    Article  PubMed  PubMed Central  Google Scholar 

  • Witkiewicz AK, McMillan EA, Balaji U, Baek G, Lin WC, Mansour J, Mollaee M, Wagner KU, Koduru P, Yopp A et al (2015) Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 6:6744

    Article  CAS  PubMed  Google Scholar 

  • Wu C, Huang ZH, Meng ZQ, Fan XT, Lu S, Tan YY, You LM, Huang JQ, Stalin A, Ye PZ et al (2021) A network pharmacology approach to reveal the pharmacological targets and biological mechanism of compound kushen injection for treating pancreatic cancer based on WGCNA and in vitro experiment validation. Chin Med 16(1):121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S, Wang W, Xu C, Li X, Ye J, Zhu Y, Ge T (2019) ROS1-ADGRG6: a case report of a novel ROS1 oncogenic fusion variant in lung adenocarcinoma and the response to crizotinib. BMC Cancer 19(1):769

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang RM, Zhan M, Xu SW, Long MM, Yang LH, Chen W, Huang S, Liu Q, Zhou J, Zhu J et al (2017a) miR-3656 expression enhances the chemosensitivity of pancreatic cancer to gemcitabine through modulation of the RHOF/EMT axis. Cell Death Dis 8(10):e3129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang R-M, Zhan M, Xu S-W, Long M-M, Yang L-H, Chen W, Huang S, Liu Q, Zhou J, Zhu J et al (2017b) miR-3656 expression enhances the chemosensitivity of pancreatic cancer to gemcitabine through modulation of the RHOF/EMT axis. Cell Death & Dis 8(10):e3129

    Article  CAS  Google Scholar 

  • Zeng S, Pöttler M, Lan B, Grützmann R, Pilarsky C, Yang H (2019) Chemoresistance in pancreatic cancer. Int J Mol Sci 20(18):4504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang DD, Shi Y, Liu JB, Yang XL, Xin R, Wang HM, Wang PY, Jia CY, Zhang WJ, Ma YS et al (2021) Construction of a Myc-associated ceRNA network reveals a prognostic signature in hepatocellular carcinoma. Mol Ther Nucleic Acids 24:1033–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang H, Zhou Z, Ma Z, Li Z, Liu C, Huang S, Zhang C, Hou B (2020a) Characterization of the prognostic and oncologic values of ITGB superfamily members in pancreatic cancer. J Cell Mol Med 24(22):13481–13493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang H, Zhou Z, Ma Z, Li Z, Liu C, Huang S, Zhang C, Hou B (2020b) Characterization of the prognostic and oncologic values of ITGB superfamily members in pancreatic cancer. J Cell Mol Med 24(22):13481–13493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Basic research fund of Fourth Hospital of Hebei Medical University (20210831).

Author information

Authors and Affiliations

Authors

Contributions

JKL: Conceptualization, methodology, writing- reviewing and editing. BD: Conceptualization, data curation, writing- original draft preparation. YSZ: Visualization, investigation, formal analysis. HG: Visualization, investigation.

Corresponding author

Correspondence to Jiankun Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

Not applicable.

Consent to Participation

Not applicable.

Consent to Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, B., Zhang, Y., Gao, H. et al. Machine Learning Developed a MYC Expression Feature-Based Signature for Predicting Prognosis and Chemoresistance in Pancreatic Adenocarcinoma. Biochem Genet (2024). https://doi.org/10.1007/s10528-023-10625-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10528-023-10625-0

Keywords

Navigation