Skip to main content
Log in

MYEOV with High Frequencies of Mutations in Head and Neck Cancers Facilitates Cancer Cell Malignant Behaviors

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Cancer driver genes (CDGs) and the driver mutations disrupt the homeostasis of numerous critical cell activities, thereby playing a critical role in tumor initiation and progression. In this study, integrative bioinformatics analyses were performed based on a series of online databases, aiming to identify driver genes with high frequencies of mutations in head and neck cancers. Higher myeloma overexpressed (MYEOV) genetic variation frequency and expression level were connected to a poorer prognosis in head and neck cancer patients. MYEOV was dramatically upregulated within head and neck tumor samples and cells. Consistently, MYEOV overexpression remarkably enhanced the aggressiveness of head and neck cancer cells by promoting colony formation, cell invasion, and cell migration. Conversely, MYEOV knockdown attenuated cancer cell aggressiveness and inhibited tumor growth and metastasis in the oral orthotopic tumor model. In conclusion, MYEOV is overexpressed in head and neck cancer, with greater mutation frequencies correlating to a poorer prognosis in head and neck cancer patients. MYEOV serves as an oncogene in head and neck cancer through the promotion of tumor cell colony formation, invasion, and migration, as well as promoting tumor growth and metastasis in the oral orthotopic tumor model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data and materials are available.

References

  • Agrawal N et al (2011) Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 333(6046):1154–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhtar J et al (2014) Effectiveness of local injection of lentivirus-delivered stathmin1 and stathmin1 shRNA in human gastric cancer xenograft mouse. J Gastroenterol Hepatol 29(9):1685–1691

    Article  CAS  PubMed  Google Scholar 

  • Ausoni S et al (2016) Targeting cellular and molecular drivers of head and neck squamous cell carcinoma: current options and emerging perspectives. Cancer Metastasis Rev 35(3):413–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey MH et al (2018) Comprehensive characterization of cancer driver genes and mutations. Cell 173(2):371-385 e18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cancer Genome Atlas Network (2015) Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 517(7536):576–582

    Article  Google Scholar 

  • Cancer Genome Atlas Research Network (2013) The Cancer Genome Atlas Pan-Cancer analysis project. Nat Genet 45(10):1113–1120

    Article  PubMed Central  Google Scholar 

  • Cao ZQ, Wang Z, Leng P (2019) Aberrant N-cadherin expression in cancer. Biomed Pharmacother 118:109320

    Article  CAS  PubMed  Google Scholar 

  • Dent P (2013) FADD the bad in head and neck cancer. Cancer Biol Ther 14(9):780–781

    Article  PubMed  PubMed Central  Google Scholar 

  • Fang L et al (2019) MYEOV functions as an amplified competing endogenous RNA in promoting metastasis by activating TGF-beta pathway in NSCLC. Oncogene 38(6):896–912

    Article  CAS  PubMed  Google Scholar 

  • Freier K et al (2006) Recurrent coamplification of cytoskeleton-associated genes EMS1 and SHANK2 with CCND1 in oral squamous cell carcinoma. Genes Chromosomes Cancer 45(2):118–125

    Article  CAS  PubMed  Google Scholar 

  • Gao J et al (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pl1

    Article  PubMed  PubMed Central  Google Scholar 

  • Glinsky GV (2006) Integration of HapMap-based SNP pattern analysis and gene expression profiling reveals common SNP profiles for cancer therapy outcome predictor genes. Cell Cycle 5(22):2613–2625

    Article  CAS  PubMed  Google Scholar 

  • Goldman MJ et al (2020) Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 38(6):675–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurubhagavatula S et al (2004) XPD and XRCC1 genetic polymorphisms are prognostic factors in advanced non-small-cell lung cancer patients treated with platinum chemotherapy. J Clin Oncol 22(13):2594–2601

    Article  CAS  PubMed  Google Scholar 

  • Heist RS et al (2007) MDM2 polymorphism, survival, and histology in early-stage non-small-cell lung cancer. J Clin Oncol 25(16):2243–2247

    Article  CAS  PubMed  Google Scholar 

  • Hopkins J et al (2008) Genetic polymorphisms and head and neck cancer outcomes: a review. Cancer Epidemiol Biomark Prev 17(3):490–499

    Article  CAS  Google Scholar 

  • Ideta Y et al (2021) Transcriptomic profiling predicts multiple pathways and molecules associated with the metastatic phenotype of oral cancer cells. Cancer Genom Proteom 18(1):17–27

    Article  CAS  Google Scholar 

  • International Cancer Genome Consortium (2010) International network of cancer genome projects. Nature 464(7291):993–998

    Article  Google Scholar 

  • Izzo JG et al (2007) Cyclin D1 guanine/adenine 870 polymorphism with altered protein expression is associated with genomic instability and aggressive clinical biology of esophageal adenocarcinoma. J Clin Oncol 25(6):698–707

    Article  CAS  PubMed  Google Scholar 

  • Jamroziak K, Robak T (2004) Pharmacogenomics of MDR1/ABCB1 gene: the influence on risk and clinical outcome of haematological malignancies. Hematology 9(2):91–105

    Article  CAS  PubMed  Google Scholar 

  • Janssen JW et al (2000) Concurrent activation of a novel putative transforming gene, myeov, and cyclin D1 in a subset of multiple myeloma cell lines with t(11;14)(q13;q32). Blood 95(8):2691–2698

    CAS  PubMed  Google Scholar 

  • Janssen JW et al (2002a) MYEOV: a candidate gene for DNA amplification events occurring centromeric to CCND1 in breast cancer. Int J Cancer 102(6):608–614

    Article  CAS  PubMed  Google Scholar 

  • Janssen JW et al (2002b) MYEOV, a gene at 11q13, is coamplified with CCND1, but epigenetically inactivated in a subset of esophageal squamous cell carcinomas. J Hum Genet 47(9):460–464

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang J, Hong S (2014) ANO1 as a marker of oral squamous cell carcinoma and silencing ANO1 suppresses migration of human SCC-25 cells. Med Oral Patol Oral Cir Bucal 19(4):e313–e319

    Article  PubMed  Google Scholar 

  • Liang E et al (2020) MYEOV increases HES1 expression and promotes pancreatic cancer progression by enhancing SOX9 transactivity. Oncogene 39(41):6437–6450

    Article  CAS  PubMed  Google Scholar 

  • Liu P et al (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8(8):627–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z et al (2012) Manganese superoxide dismutase induces migration and invasion of tongue squamous cell carcinoma via H2O2-dependent Snail signaling. Free Radic Biol Med 53(1):44–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H et al (2018) LncRNA XIST/miR-34a axis modulates the cell proliferation and tumor growth of thyroid cancer through MET-PI3K-AKT signaling. J Exp Clin Cancer Res 37(1):279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Balibrea E et al (2007) Combined analysis of genetic polymorphisms in thymidylate synthase, uridine diphosphate glucoronosyltransferase and X-ray cross complementing factor 1 genes as a prognostic factor in advanced colorectal cancer patients treated with 5-fluorouracil plus oxaliplatin or irinotecan. Oncol Rep 17(3):637–645

    CAS  PubMed  Google Scholar 

  • Moreaux J et al (2010) MYEOV is a prognostic factor in multiple myeloma. Exp Hematol 38(12):1189-1198 e3

    Article  CAS  PubMed  Google Scholar 

  • Moss AC et al (2006) ETV4 and Myeov knockdown impairs colon cancer cell line proliferation and invasion. Biochem Biophys Res Commun 345(1):216–221

    Article  CAS  PubMed  Google Scholar 

  • Mwenifumbo JC, Marra MA (2013) Cancer genome-sequencing study design. Nat Rev Genet 14(5):321–332

    Article  CAS  PubMed  Google Scholar 

  • Pickering CR et al (2013) Integrative genomic characterization of oral squamous cell carcinoma identifies frequent somatic drivers. Cancer Discov 3(7):770–781

    Article  CAS  PubMed  Google Scholar 

  • Roomi MW et al (2010) In vitro modulation of MMP-2 and MMP-9 in human cervical and ovarian cancer cell lines by cytokines, inducers and inhibitors. Oncol Rep 23(3):605–614

    CAS  PubMed  Google Scholar 

  • Seiwert TY et al (2015) Integrative and comparative genomic analysis of HPV-positive and HPV-negative head and neck squamous cell carcinomas. Clin Cancer Res 21(3):632–641

    Article  CAS  PubMed  Google Scholar 

  • Siegel RL et al (2021) Cancer statistics, 2021. CA Cancer J Clin 71(1):7–33

    Article  PubMed  Google Scholar 

  • Soares-Lima SC et al (2021) Upper aerodigestive tract squamous cell carcinomas show distinct overall DNA methylation profiles and different molecular mechanisms behind WNT signaling disruption. Cancers 13(12):3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternlicht MD et al (2006) Prognostic value of PAI1 in invasive breast cancer: evidence that tumor-specific factors are more important than genetic variation in regulating PAI1 expression. Cancer Epidemiol Biomark Prev 15(11):2107–2114

    Article  CAS  Google Scholar 

  • Stransky N et al (2011) The mutational landscape of head and neck squamous cell carcinoma. Science 333(6046):1157–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stratton MR (2011) Exploring the genomes of cancer cells: progress and promise. Science 331(6024):1553–1558

    Article  CAS  PubMed  Google Scholar 

  • Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458(7239):719–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung H et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  PubMed  Google Scholar 

  • Takita J et al (2011) Aberrations of NEGR1 on 1p31 and MYEOV on 11q13 in neuroblastoma. Cancer Sci 102(9):1645–1650

    Article  CAS  PubMed  Google Scholar 

  • Tamborero D et al (2018) Cancer Genome Interpreter annotates the biological and clinical relevance of tumor alterations. Genome Med 10(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  • Tang R et al (2020) Overexpression of MYEOV predicting poor prognosis in patients with pancreatic ductal adenocarcinoma. Cell Cycle 19(13):1602–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thier R et al (2002) Cytochrome P450 1B1, a new keystone in gene-environment interactions related to human head and neck cancer? Arch Toxicol 76(5–6):249–256

    Article  CAS  PubMed  Google Scholar 

  • Toffoli G, Cecchin E (2007) Clinical implications of genetic polymorphisms on stomach cancer drug therapy. Pharmacogenomics J 7(2):76–80

    Article  CAS  PubMed  Google Scholar 

  • Wong SHM et al (2018) E-cadherin: its dysregulation in carcinogenesis and clinical implications. Crit Rev Oncol Hematol 121:11–22

    Article  PubMed  Google Scholar 

  • Wu X et al (2006) Genetic variations in radiation and chemotherapy drug action pathways predict clinical outcomes in esophageal cancer. J Clin Oncol 24(23):3789–3798

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Ma A (2021) High expression of MYEOV reflects poor prognosis in non-small cell lung cancer. Gene 770:145337

    Article  CAS  PubMed  Google Scholar 

  • Zhang X et al (2018) Systematic analysis of genes involved in oral cancer metastasis to lymph nodes. Cell Mol Biol Lett 23:53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou W et al (2004) Excision repair cross-complementation group 1 polymorphism predicts overall survival in advanced non-small cell lung cancer patients treated with platinum-based chemotherapy. Clin Cancer Res 10(15):4939–4943

    Article  CAS  PubMed  Google Scholar 

  • Zhu L et al (2019) The pathogenic effect of cortactin tyrosine phosphorylation in cutaneous squamous cell carcinoma. In Vivo 33(2):393–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Guangzhou Scientific Research Program Project (201904010045).

Author information

Authors and Affiliations

Authors

Contributions

DO and YW conception and design the experiments. DO drafted the article. JZ, JL, ZL, MS contributed to cell and animal experiments. XG revised the article critically for important intellectual content. SC contributed to the analysis.

Corresponding author

Correspondence to Deming Ou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The Research Ethics Committee of the Panyu Central Hospital approved all experiments.

Consent to participate

Informed consent form was signed by each patient involved.

Consent for publication

All the authors read and approved the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Fig. S1 Frequencies of the top 15 amplified genes in head and neck cancers (TIF 243 KB)

Fig. S2 Multiple methylation sites (cg01638792, cg22779330, cg08759026) in the promoter region of MYEOV (TIF 409 KB)

10528_2023_10484_MOESM3_ESM.tif

Fig. S3 Effects of MYEOV knockdown on oral cancer cell proliferation, invasion, and migration (A) Image of colony formation assay results. (B) Image of Transwell assay results. (B) Image of Wound healing assay results. Scale bar = 100 μm (TIF 9197 KB)

10528_2023_10484_MOESM4_ESM.tif

Fig. S4 Effects of MYEOV overexpression on oral cancer cell proliferation, invasion, and migration (A) Image of colony formation assay results. (B) Image of Transwell assay results. (B) Image of Wound healing assay results. Scale bar = 100 μm (TIF 12179 KB)

Supplementary file5 (DOCX 18 KB)

Supplementary file6 (DOCX 17 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, D., Wu, Y., Zhang, J. et al. MYEOV with High Frequencies of Mutations in Head and Neck Cancers Facilitates Cancer Cell Malignant Behaviors. Biochem Genet (2023). https://doi.org/10.1007/s10528-023-10484-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10528-023-10484-9

Keywords

Navigation