Skip to main content
Log in

Knockdown of Notch Suppresses Epithelial-mesenchymal Transition and Induces Angiogenesis in Oral Submucous Fibrosis by Regulating TGF-β1

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Oral submucous fibrosis (OSF) is a chronic disorder with a high malignant transformation rate. Epithelial-mesenchymal transition (EMT) and angiogenesis are key events in OSF. The Notch signaling plays an essential role in the pathogenesis of various fibrotic diseases, including OSF. Our study aimed to explore the effects of Notch on the EMT and angiogenesis processes during the development of OSF. The expression of Notch in OSF tissues versus normal buccal mucosa samples was compared. Arecoline was used to induce myofibroblast transdifferentiation of buccal mucosal fibroblasts (BMFs). Short hairpin RNA technique was used to knockdown Notch in BMFs. Pirfenidone and SRI-011381 were used to inhibit and activate the TGF-β1 signaling pathway in BMFs, respectively. The expression of Notch was markedly upregulated in OSF tissues and fibrotic BMFs. Knockdown of Notch significantly decreased the viability and promoted apoptosis in BMFs subjected to arecoline stimulation. Downregulation of Notch also significantly suppressed the EMT process, as shown by the reduction of N-cadherin and vimentin with concomitant upregulation of E-cadherin. In addition, knockdown of Notch upregulated VEGF and enhanced the angiogenic activity of fBMFs. Moreover, inhibition of TGF-β1 suppressed viability and EMT, promoted apoptosis, and induced angiogenesis of fBMFs, while activation of TGF-β1 significantly diminished the effects of Notch knockdown on fBMFs. Knockdown of Notch suppressed EMT and induced angiogenesis in OSF by regulating TGF-β1, suggesting that the Notch-TGF-β1 pathway may serve as a therapeutic intervention target for OSF.

Highlights

  • Notch is upregulated in oral submucous fibrosis tissues and fibrotic buccal mucosal fibroblasts (fBMFs).

  • Knockdown of Notch suppresses the viability and epithelial-mesenchymal transition, promotes apoptosis, and induces angiogenesis in fBMFs.

  • Activation of the transforming growth factor beta 1 signaling diminished the effects of Notch knockdown on fBMFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The raw data supporting the conclusions of this manuscript will be made available by the corresponding author, without undue reservation, to any qualified researcher.

Abbreviations

OSF:

Oral submucosal fibrosis

BMFs:

Buccal mucosal fibroblasts

EMT:

Epithelial-mesenchymal transition

shRNA:

Short hairpin RNA

fBMFs:

Fibrotic BMFs

VEGF:

Vascular endothelial growth factors

qRT-PCR:

Quantitative reverse transcription PCR

TGF-β1:

Transforming growth factor beta 1

References

  • Alavi M, Rai M, Martinez F et al (2022) The efficiency of metal, metal oxide, and metalloid nanoparticles against cancer cells and bacterial pathogens: different mechanisms of action. Cell Mol Biomed 2(1):10–21

    Article  Google Scholar 

  • Campagna R, Cecati M, Pozzi V et al (2018) Involvement of transforming growth factor beta 1 in the transcriptional regulation of nicotinamide N-methyltransferase in clear cell renal cell carcinoma. Cell Mol Biol 64(7):51–55

    Article  PubMed  Google Scholar 

  • Chang YC, Tsai CH, Lai YL et al (2014) Arecoline-induced myofibroblast transdifferentiation from human buccal mucosal fibroblasts is mediated by ZEB1. J Cell Mol Med 18(4):698–708

    Article  CAS  PubMed  Google Scholar 

  • Choudhari SS, Kulkarni DG, Patankar S et al (2018) Angiogenesis and fibrogenesis in oral submucous fibrosis: a viewpoint. J Contemp Dent Pract 19(2):242–245

    Article  PubMed  Google Scholar 

  • Das RK, Anura A, Pal M et al (2013) Epithelio-mesenchymal transitional attributes in oral sub-mucous fibrosis. Exp Mol Pathol 95(3):259–269

    Article  CAS  PubMed  Google Scholar 

  • Dees C, Zerr P, Tomcik M et al (2011) Inhibition of Notch signaling prevents experimental fibrosis and induces regression of established fibrosis. Arthritis Rheum 63(5):1396–1404

    Article  CAS  PubMed  Google Scholar 

  • Hu B, Phan SH (2016) Notch in fibrosis and as a target of anti-fibrotic therapy. Pharmacol Res 108:57–64

    Article  CAS  PubMed  Google Scholar 

  • Kachanova O, Lobov A, Malashicheva A (2022) The role of the notch signaling pathway in recovery of cardiac function after myocardial infarction. Int J Mol Sci 23(20):12509

    Article  CAS  PubMed  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428

    Article  CAS  PubMed  Google Scholar 

  • Kar R, Jha NK, Jha SK et al (2019) A “NOTCH” deeper into the epithelial-to-mesenchymal transition (EMT) program in breast cancer. Genes 10(12):961

    Article  CAS  PubMed  Google Scholar 

  • Khalili M, Ebrahimzadeh MA (2015) A review on antioxidants and some of their common evaluation methods. J Mazandaran Univ Med Sci 24(120):188–208

    Google Scholar 

  • Kucak M, Demir U, Muslumanoglu MH (2022) Investigation of the cytotoxic, anti-proliferative and anti-angiogenic effects of toluhydroquinone on Caco-2 cell line. Cell Mol Biol 68(8):8–12

    Article  PubMed  Google Scholar 

  • Li H, Wang Q, Wang Y et al (2019) Esculetin inhibits the proliferation of human lung cancer cells by targeting epithelial-to-mesenchymal transition of the cells. Cell Mol Biol 65(7):95–98

    Article  PubMed  Google Scholar 

  • Luo Z, Shang X, Zhang H et al (2019) Notch signaling in osteogenesis osteoclastogenesis, and angiogenesis. Am J Pathol 189(8):1495–1500

    Article  CAS  PubMed  Google Scholar 

  • Matsuno Y, Coelho AL, Jarai G et al (2012) Notch signaling mediates TGF-β1-induced epithelial-mesenchymal transition through the induction of Snai1. Int J Biochem Cell Biol 44(5):776–789

    Article  CAS  PubMed  Google Scholar 

  • Moore G, Annett S, McClements L et al (2020) Top Notch targeting strategies in cancer a detailed overview of recent insights and current perspectives. Cells 9(6):1503

    Article  CAS  PubMed  Google Scholar 

  • More CB, JattiPatil D, Rao NR (2020) Medicinal management of oral submucous fibrosis in the past decade- a systematic review. J Oral Biol Craniofac Res 10(4):552–568

    Article  PubMed  Google Scholar 

  • Murthy V, Mylonas P, Carey B et al (2022) Malignant transformation rate of oral submucous fibrosis: a systematic review and meta-analysis. J Clin Med 11(7):1793

    Article  PubMed  Google Scholar 

  • Nakazato H, Oku H, Yamane S et al (2002) A novel anti-fibrotic agent pirfenidone suppresses tumor necrosis factor-alpha at the translational level. Eur J Pharmacol 446(1–3):177–185

    Article  CAS  PubMed  Google Scholar 

  • Nemir M, Metrich M, Plaisance I et al (2014) The Notch pathway controls fibrotic and regenerative repair in the adult heart. Eur Heart J 35(32):2174–2185

    Article  CAS  PubMed  Google Scholar 

  • Nigam K, Srivastav RK (2021) Notch signaling in oral pre-cancer and oral cancer. Med Oncol 38(12):139

    Article  CAS  PubMed  Google Scholar 

  • Panda A, Mishra P, Mohanty A et al (2022) Is epithelial-mesenchymal transition a new roadway in the pathogenesis of oral submucous fibrosis: a comprehensive review. Cureus 14(9):e29636

    PubMed  Google Scholar 

  • Patel J, Baz B, Wong HY et al (2018) Accelerated endothelial to mesenchymal transition increased fibrosis via deleting notch signaling in wound vasculature. J Invest Dermatol 138(5):1166–1175

    Article  CAS  PubMed  Google Scholar 

  • Piera-Velazquez S, Mendoza FA, Jimenez SA (2016) Endothelial to mesenchymal transition (EndoMT) in the pathogenesis of human fibrotic diseases. J Clin Med 5(4):45

    Article  PubMed  Google Scholar 

  • Rai A, Ahmad T, Parveen S et al (2020) Expression of transforming growth factor beta in oral submucous fibrosis. J Oral Biol Craniofac Res 10(2):166–170

    Article  PubMed  Google Scholar 

  • Rao NR, Villa A, More CB et al (2020) Oral submucous fibrosis: a contemporary narrative review with a proposed inter-professional approach for an early diagnosis and clinical management. J Otolaryngol Head Neck Surg 49(1):3

    Article  PubMed  Google Scholar 

  • Sharma E, Tyagi N, Gupta V et al (2019) Role of angiogenesis in oral submucous fibrosis using vascular endothelial growth factor and CD34: An immunohistochemical study. Indian J Dent Res 30(5):755–762

    Article  PubMed  Google Scholar 

  • Shetty SS, Sharma M, Fonseca FP et al (2020) Signaling pathways promoting epithelial mesenchymal transition in oral submucous fibrosis and oral squamous cell carcinoma. Jpn Dent Sci Rev 56(1):97–108

    Article  PubMed  Google Scholar 

  • Shih YH, Wang TH, Shieh TM et al (2019) Oral submucous fibrosis: a review on etiopathogenesis, diagnosis, and therapy. Int J Mol Sci 20(12):2940

    Article  CAS  PubMed  Google Scholar 

  • Sisto M, Lorusso L, Ingravallo G et al (2018) The TGF-β1 signaling pathway as an attractive target in the fibrosis pathogenesis of sjögren’s syndrome. Med Inflamm 2018:1965935

    Article  Google Scholar 

  • Sisto M, Ribatti D, Lisi S (2021) Organ fibrosis and autoimmunity: the role of inflammation in TGFβ-dependent EMT. Biomolecules 11(2):310

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Li Y, Kong D et al (2010) The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr Drug Targets 11(6):745–751

    Article  CAS  PubMed  Google Scholar 

  • Wang JQ, Xu ZH, Liang WZ et al (2016) Effects of c-Jun-Nterminal kinase on Activin A/Smads signaling in PC12 cell suffered from oxygen-glucose deprivation. Cell Mol Biol 62(2):81–86

    CAS  PubMed  Google Scholar 

  • Wang C, Jiang T, Zhu Y (2022) Experimental study on anti angiogenesis of recombinant mouse angiostatin gene in mice with gallbladder carcinoma. Cell Mol Biol 67(6):117–124

    Article  PubMed  Google Scholar 

  • Wen R, Lin H, Li X et al (2022) The Regulatory mechanism of EpCAM N-glycosylation-mediated MAPK and PI3K/Akt pathways on epithelial-mesenchymal transition in breast cancer cells. Cell Mol Biol 68(5):192–201

    Article  PubMed  Google Scholar 

  • Xu H, Lyu FY, Song JY et al (2021) Research achievements of oral submucous fibrosis: progress and prospect. Biomed Res Int 2021:6631856

    PubMed  Google Scholar 

  • Yu CC, Liao YW, Hsieh PL et al (2021) Targeting lncRNA H19/miR-29b/COL1A1 axis impedes myofibroblast activities of precancerous oral submucous fibrosis. Int J Mol Sci 22(4):2216

    Article  CAS  PubMed  Google Scholar 

  • Zhan Y, Wan H, Wu L et al (2022) Pseudoangiosarcomatous squamous cell carcinoma: a rare subtype of squamous cell carcinoma that needs to be differentiated from angiosarcoma and has a poor prognosis. Cell Mol Biol 68(6):62–66

    Article  PubMed  Google Scholar 

  • Zhang L, Sha J, Yang G et al (2017) Activation of Notch pathway is linked with epithelial-mesenchymal transition in prostate cancer cells. Cell Cycle 16(10):999–1007

    Article  CAS  PubMed  Google Scholar 

  • Zhou XL, Fang YH, Wan L et al (2019) Notch signaling inhibits cardiac fibroblast to myofibroblast transformation by antagonizing TGF-β1/Smad3 signaling. J Cell Physiol 234(6):8834–8845

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Zhu Y, Li Z et al (2021) Exosome-derived long non-coding RNA ADAMTS9-AS2 suppresses progression of oral submucous fibrosis via AKT signalling pathway. J Cell Mol Med 25(4):2262–2273

    Article  CAS  PubMed  Google Scholar 

  • Zmorzyński S, Styk W, Filip AA et al (2019) The significance of NOTCH pathway in the development of fibrosis in systemic sclerosis. Ann Dermatol 31(4):365–371

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by the Hainan Provincial Natural Science Foundation of China (Grant No.822RC828) and Research Projects of Educational Science of Hainan Medical University (Grant No. HYZD202213).

Author information

Authors and Affiliations

Authors

Contributions

Guarantor of integrity of the entire study: WL. Study concepts: WL. Study design: WL. Definition of intellectual content: ZL. Literature research: JW. Clinical studies: ZL. Experimental studies: JW. Data acquisition: JM. Data analysis: JM. Statistical analysis: HK. Manuscript preparation: YH. Manuscript editing: HS. Manuscript review: WL.

Corresponding author

Correspondence to Wen Luo.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Ethical Approval

This study was approved by the Ethics Review Committee of the First Affiliated Hospital of Hainan Medical University.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, L., Mei, J. et al. Knockdown of Notch Suppresses Epithelial-mesenchymal Transition and Induces Angiogenesis in Oral Submucous Fibrosis by Regulating TGF-β1. Biochem Genet 62, 1055–1069 (2024). https://doi.org/10.1007/s10528-023-10452-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-023-10452-3

Keywords

Navigation