Skip to main content
Log in

Circular RNA Circ_0005962 Contributes to Lung Adenocarcinoma Cell Proliferation and Stem Cell Formation Through Sponging of miR-3611 and Modulating CYP24A1 Expression

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Recently, several studies have revealed that circular RNAs (circRNAs) play significant roles in various tumors, including lung adenocarcinoma (LUAD). Furthermore, it has been reported that circ_0005962 was upregulated in LUAD cells. Accordingly, this research is designed to investigate the mechanism of circ_0005962 on LUAD development. Circ_0005962, microRNA-3611 (miR-3611), and Cytochrome P450 family 24 subfamily A member 1 (CYP24A1) level were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation ability, cell cycle progression, and sphere formation ability were detected using Cell Counting Kit-8 (CCK-8), 5-ethynyl-2’-deoxyuridine (EdU), Colony formation, flow cytometry, and sphere formation assay. Protein levels of proliferating cell nuclear antigen (PCNA), Ki67, NANOG, CD133, OCT4, and CYP24A1 were determined using Western blot assay. Using bioinformatics software (Starbase3.0 and TargetScan), the binding between miR-3611 and circ_0005962 or CYP24A1 was predicted and proved using RNA Immunoprecipitation (RIP) and RNA pull-down assays. A xenograft tumor model in vivo was used to analyze the biological role of circ_0005962 on LUAD cell growth. Increased circ_0005962 and CYP24A1, and reduced miR-3611 were observed in LUAD tissues and cell lines. Functional assays testified that circ_0005962 depletion might hinder LUAD cell proliferation and sphere formation capability, but induced cell apoptosis in vitro. Molecular mechanism experiments exhibited that circ_0005962 served as a miR-3611 sponge and mediated CYP24A1 content by absorbing miR-3611. Additionally, silencing of circ_0005962 inhibited tumor growth in xenograft modes. Together, circ_0005962 was overexpressed in LUAD, and its deficiency repressed LUAD progression via targeting the miR-3611/ CYP24A1 axis, providing a novel mechanism for understanding the development of LUAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The analyzed data sets generated during the present study are available from the corresponding author on reasonable request.

References

  • Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143(11):1838–1847

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Wang C, Sun H, Wang J, Liang Y, Wang Y, Wong G (2021) The bioinformatics toolbox for circRNA discovery and analysis. Brief Bioinform 22(2):1706–1728

    CAS  PubMed  Google Scholar 

  • Ergun S, Oztuzcu S (2015) Oncocers: ceRNA-mediated cross-talk by sponging miRNAs in oncogenic pathways. Tumour Biol: J Int Soc Oncodev Biol Med 36(5):3129–3136

    CAS  Google Scholar 

  • Ebbesen KK, Kjems J, Hansen TB (2016) Circular RNAs: identification, biogenesis and function. Biochem Biophys Acta 1859(1):163–168

    CAS  PubMed  Google Scholar 

  • Glenfield C, McLysaght A (2018) Pseudogenes provide evolutionary evidence for the competitive endogenous RNA hypothesis. Mol Biol Evol 35(12):2886–2899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guarino C, Cesaro C, La Cerra G, Lucci R, Cesaro F, Zamparelli E (2021) Emergency rigid bronchoscopy and immunotherapy: successful combination in dramatic respiratory debut of pulmonary adenocarcinoma. Tumori. 107(6):91–93

    Google Scholar 

  • Han B, Chao J, Yao H (2018) Circular RNA and its mechanisms in disease: from the bench to the clinic. Pharmacol Ther 187:31–44

    CAS  PubMed  Google Scholar 

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495(7441):384–388

    CAS  PubMed  Google Scholar 

  • Hombach S, Kretz M (2016) Non-coding RNAs: classification, biology and functioning. Adv Exp Med Biol 937:3–17

    CAS  PubMed  Google Scholar 

  • Huang Q, Guo H, Wang S, Ma Y, Chen H, Li H, Li J, Li X, Yang F, Qiu M et al (2020a) A novel circular RNA, circXPO1, promotes lung adenocarcinoma progression by interacting with IGF2BP1. Cell Death Dis 11(12):1031

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Ray P, Ji W, Wang Z, Nancarrow D, Chen G, Galban S, Lawrence TS, Beer DG, Rehemtulla A et al (2020b) The cytochrome P450 enzyme CYP24A1 increases proliferation of mutant KRAS-dependent lung adenocarcinoma independent of its catalytic activity. J Biol Chem 295(18):5906–5917

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang W, Wang X, Wu F, Xu F (2021) LncRNA LINC00520 aggravates cell proliferation and migration in lung adenocarcinoma via a positive feedback loop. BMC Pulm Med 21(1):287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu N, Zhang H (2018) CYP24A1 depletion facilitates the antitumor effect of vitamin D3 on thyroid cancer cells. Exp Ther Med 16(4):2821–2830

    PubMed  PubMed Central  Google Scholar 

  • Hutchinson BD, Shroff GS, Truong MT, Ko JP (2019) Spectrum of lung adenocarcinoma. Semin Ultrasound CT MR 40(3):255–264

    PubMed  Google Scholar 

  • Jeck WR, Sharpless NE (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32(5):453–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kosa JP, Horvath P, Wolfling J, Kovacs D, Balla B, Matyus P, Horvath E, Speer G, Takacs I, Nagy Z et al (2013) CYP24A1 inhibition facilitates the anti-tumor effect of vitamin D3 on colorectal cancer cells. World J Gastroenterol 19(17):2621–2628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kristensen LS, Jakobsen T, Hager H, Kjems J (2022) The emerging roles of circRNAs in cancer and oncology. Nat Rev Clin Oncol 19(3):188–206

    CAS  PubMed  Google Scholar 

  • Li LJ, Zhao W, Tao SS, Leng RX, Fan YG, Pan HF, Ye DQ (2017) Competitive endogenous RNA network: potential implication for systemic lupus erythematosus. Expert Opin Ther Targets 21(6):639–648

    CAS  PubMed  Google Scholar 

  • Lopez-Jimenez E, Rojas AM, Andres-Leon E (2018) RNA sequencing and prediction tools for circular RNAs analysis. Adv Exp Med Biol 1087:17–33

    CAS  PubMed  Google Scholar 

  • Li Z, Ma G, Pan Y (2021) Five circRNAs serve as potential diagnostic and prognostic biomarkers in lung adenocarcinoma. Clin lab 67:8

    Google Scholar 

  • Liu XX, Yang YE, Liu X, Zhang MY, Li R, Yin YH, Qu YQ (2019) A two-circular RNA signature as a noninvasive diagnostic biomarker for lung adenocarcinoma. J Transl Med 17(1):50

    PubMed  PubMed Central  Google Scholar 

  • Lu T, Qiu T, Han B, Wang Y, Sun X, Qin Y, Liu A, Ge N, Jiao W (2021) Circular RNA circCSNK1G3 induces HOXA10 signaling and promotes the growth and metastasis of lung adenocarcinoma cells through hsa-miR-143-3p sponging. Cell Oncol 44(2):297–310

    CAS  Google Scholar 

  • Nisar S, Bhat AA, Singh M, Karedath T, Rizwan A, Hashem S, Bagga P, Reddy R, Jamal F, Uddin S et al (2021) Insights into the role of CircRNAs: biogenesis, characterization, functional, and clinical impact in human malignancies. Front Cell and Dev Biol 9:617281

    Google Scholar 

  • Panda AC (2018) Circular RNAs Act as miRNA sponges. Adv Exp Med Biol 1087:67–79

    CAS  PubMed  Google Scholar 

  • Panni S, Lovering RC, Porras P, Orchard S (2020) Non-coding RNA regulatory networks. Biochim Biophys Acta 1863(6):194417

    CAS  Google Scholar 

  • Patop IL, Wust S, Kadener S (2019) Past, present, and future of circRNAs. EMBO J 38(16):e100836

    PubMed  PubMed Central  Google Scholar 

  • Sanger HL, Klotz G, Riesner D, Gross HJ, Kleinschmidt AK (1976) Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA 73(11):3852–3856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20(11):675–691

    CAS  PubMed  Google Scholar 

  • Pankova D, Jiang Y, Chatzifrangkeskou M, Vendrell I, Buzzelli J, Ryan A, Brown C, O’Neill E (2019) RASSF1A controls tissue stiffness and cancer stem-like cells in lung adenocarcinoma. EMBO J 38(13):e100532

    PubMed  PubMed Central  Google Scholar 

  • Qiu M, Xia W, Chen R, Wang S, Xu Y, Ma Z, Xu W, Zhang E, Wang J, Fang T et al (2018) The circular RNA circPRKCI promotes tumor growth in lung adenocarcinoma. Can Res 78(11):2839–2851

    CAS  Google Scholar 

  • Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W (2015) ceRNA in cancer: possible functions and clinical implications. J Med Genet 52(10):710–718

    PubMed  Google Scholar 

  • Saygin C, Matei D, Majeti R, Reizes O, Lathia JD (2019) Targeting cancer stemness in the clinic: from hype to hope. Cell Stem Cell 24(1):25–40

    CAS  PubMed  Google Scholar 

  • Shiratsuchi H, Wang Z, Chen G, Ray P, Lin J, Zhang Z, Zhao L, Beer D, Ray D, Ramnath N (2017) Oncogenic potential of CYP24A1 in lung adenocarcinoma. J Thorac Oncol; Off Pub Int Assoc Stud Lung Cancer 12(2):269–280

    Google Scholar 

  • Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72(1):7–33

    PubMed  Google Scholar 

  • Sole C, Mentxaka G, Lawrie CH (2021) The use of circRNAs as biomarkers of cancer. Methods Mol Biol 2348:307–341

    CAS  PubMed  Google Scholar 

  • Succony L, Rassl DM, Barker AP, McCaughan FM, Rintoul RC (2021) Adenocarcinoma spectrum lesions of the lung: detection, pathology and treatment strategies. Cancer Treat Rev 99:102237

    CAS  PubMed  Google Scholar 

  • Su L, Zhao J, Su H, Wang Y, Huang W, Jiang X, Gao S (2022) CircRNAs in lung adenocarcinoma: diagnosis and therapy. Curr Gene Ther 22(1):15–22

    CAS  PubMed  Google Scholar 

  • Sun H, Jiang C, Cong L, Wu N, Wang X, Hao M, Liu T, Wang L, Liu Y, Cong X (2018) CYP24A1 inhibition facilitates the antiproliferative effect of 1,25(OH)2D3 through downregulation of the WNT/beta-catenin pathway and methylation-mediated regulation of CYP24A1 in colorectal cancer cells. DNA Cell Biol 37(9):742–749

    CAS  PubMed  Google Scholar 

  • Tajima K, Uchida N, Sasamoto H, Okada T, Kohri T, Mogi A, Kuwano H (2016) Lung adenocarcinoma with anomalous bronchi and pulmonary veins preoperatively identified by computed tomography. Thoracic Cancer 7(5):599–601

    PubMed  PubMed Central  Google Scholar 

  • Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauss A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U (2020) Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol 11:1280

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Li Z, Zhou K, Wang C, Jiang L, Zhang L, Yang Y, Luo W, Qiao W, Wang G et al (2021) Deciphering cell lineage specification of human lung adenocarcinoma with single-cell RNA sequencing. Nat Commun 12(1):6500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Tan S, Li J, Liu WR, Peng Y, Li W (2020) CircRNAs in lung cancer—biogenesis, function and clinical implication. Cancer Lett 492:106–115

    CAS  PubMed  Google Scholar 

  • Wang C, Liu WR, Tan S, Zhou JK, Xu X, Ming Y, Cheng J, Li J, Zeng Z, Zuo Y et al (2022) Characterization of distinct circular RNA signatures in solid tumors. Mol Cancer 21(1):63

    PubMed  PubMed Central  Google Scholar 

  • Xu Y, Yu J, Huang Z, Fu B, Tao Y, Qi X, Mou Y, Hu Y, Wang Y, Cao Y et al (2020) Circular RNA hsa_circ_0000326 acts as a miR-338-3p sponge to facilitate lung adenocarcinoma progression. J Exp & Clin Cancer Res: CR 39(1):57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Zhang Y, Ding X, Ren Y, Wei B, Lin Z, Nie Y, Fan Y (2021) Construction and analysis of the ceRNA network hsa_circ_0031968/miR-3611/GCG in lung adenocarcinoma. Ann Transl Med 9(24):1757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zengin T, Onal-Suzek T (2020) Analysis of genomic and transcriptomic variations as prognostic signature for lung adenocarcinoma. BMC Bioinformatics 21(Suppl 14):368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Shan Z, Chen R, Peng X, Xu B, Xiao L, Zhang G (2021) circ_0005962 functions as an oncogene to aggravate NSCLC progression. Open Medicine 16(1):997–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Yang T, Xiao J (2018) Circular RNAs: promising biomarkers for human diseases. EBioMedicine 34:267–274

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

ZY, JL and LL: designed and performed the research; LL, XL, DY and SS: analyzed the data; WL: wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Shengtian Su.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical Approval and Consent to Participate

Written informed consents were obtained from all participants and this study was permitted by the Ethics Committee of Xiantao first people's Hospital of Yangtze University.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10528_2022_10312_MOESM1_ESM.tif

Supplementary file1 Fig. 1 The images for Figure 4 (D, G, and I) were respectively shown. (A) The images of Edu assay. (B) The images of colony formation. (C) The images of sphere formation assay. (TIF 7202 KB)

10528_2022_10312_MOESM2_ESM.tif

Supplementary file2 Fig. 2 The images for Figure 6 (E, H, and J) were respectively shown. (A) The images of Edu assay. (B) The images of colony formation. (C) The images of sphere formation assay. (TIF 7137 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, W., Yu, Z., Liu, J. et al. Circular RNA Circ_0005962 Contributes to Lung Adenocarcinoma Cell Proliferation and Stem Cell Formation Through Sponging of miR-3611 and Modulating CYP24A1 Expression. Biochem Genet 61, 1242–1264 (2023). https://doi.org/10.1007/s10528-022-10312-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-022-10312-6

Keywords

Navigation