Skip to main content
Log in

A Grapevine-Inducible Gene Vv-α-gal/SIP Confers Salt and Desiccation Tolerance in Escherichia coli and Tobacco at Germinative Stage

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Grapevine is an important fruit crop cultivated worldwide. Previously, we have reported the characterization of a salt stress-inducible gene Vv-α-gal/SIP isolated from the tolerant grapevine cultivar Razegui. In this study, we performed functional studies in both Escherichia coli and tobacco systems to gain more insights in the role of the Vv-α-gal/SIP gene. Our data revealed that the recombinant E. coli cells harboring the pET24b+ expression vector with the Vv-α-gal/SIP showed higher tolerance to desiccation and salinity compared to E. coli cells harboring the vector alone. In addition, the transgenic tobacco plants expressing the Vv-α-gal/SIP gene exhibited a higher percentage of seed germination and better growth under salt stress than the wild-type (WT) tobacco seedlings. This stress mitigation might be related to the putative function of this gene, which is thought to be involved in carbohydrate metabolism regulation. Collectively, these results suggest that Vv-α-gal/SIP is potentially a candidate gene for engineering drought and salt tolerance in cultivated plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Askri H, Daldoul S, Ben Ammar A, Rejeb S, Jardak R, Rejeb MN, Mliki A, Ghorbel A (2012) Short term response of wild grapevines (Vitis vinifera L. ssp. sylvestris) to NaCl salinity exposure: changes of some physiological and molecular characteristics. Acta Physiol Plant 34:957–968. https://doi.org/10.1007/s11738-011-0892-8

    Article  CAS  Google Scholar 

  • Blochl A, Peterbauer T, Hofmann J, Richter A (2008) Enzymatic breakdown of raffinose oligosaccharides in pea seeds. Planta 228(1):99–110. https://doi.org/10.1007/s00425-008-0722-4

    Article  PubMed  Google Scholar 

  • Blöchl A, Peterbauer T, Richter A (2007) Inhibition of raffinose oligosaccharide breakdown delays germination of pea seeds. J Plant Physiol 164:1093–1096

    Article  PubMed  Google Scholar 

  • Bouksila F, Bahri A, Berndtsson R, Persson M, Rozema J, Van der Zee SEATM (2013) Assessment of soil salinization risks under irrigation with brackish water in semiarid Tunisia. Environ Exp Bot 92:176–185

    Article  CAS  Google Scholar 

  • Busch W, Wunderlich M, Schöffl F (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J 41:1–14

    Article  CAS  PubMed  Google Scholar 

  • Carmi N, Zhang G, Petreikov M, Gao Z, Eyal Y, Granot D, Schaffer AA (2003) Cloning and functional expression of alkaline alpha-galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases. Plant J 33:97–106. https://doi.org/10.1046/j.1365-313X.2003.01609.x

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi AK, Mishra A, Tiwari V, Jha B (2012) Cloning and transcript analysis of type 2 metallothionein gene (SbMT2) from extreme halophyte Salicornia brachiata and its heterologous expression in E. coli. Gene 499:280–287. https://doi.org/10.1016/j.gene.2012.03.001

    Article  CAS  PubMed  Google Scholar 

  • Chenenaoui S, Daldoul S, Mliki A (2017) High quality RNA from hydroponically grown grapevine roots suitable for gene expression studies. Turk J Biochem. https://doi.org/10.1515/tjb-2016-0301

    Google Scholar 

  • Daldoul S, Guillaumie S, Reustle M, Krczal G, Ghorbel A, Delrot S, Mliki A, Höfer MU (2010) Isolation and expression analysis of salt induced genes from contrasting grapevine (Vitis vinifera L.) cultivars. Plant Sci 179:489–498. https://doi.org/10.1016/j.plantsci.2010.07.017

    Article  CAS  PubMed  Google Scholar 

  • Daldoul S, Hanana M, Mliki A (2012a) c) Molecular characterization and in silico analysis of an alkaline agalactosidase gene (Vv-α-gal/SIP) in grapevines (Vitis vinifera. L). Turk J Biochem 37:368–374. https://doi.org/10.5505/tjb.2012.19483

    Article  CAS  Google Scholar 

  • Daldoul S, Mliki A, Höfer MU (2012b) Suppressive subtractive hybridization method analysis and its application to salt stress in grapevine (Vitis vinifera L.). Russ J Genet 48:179–185. https://doi.org/10.1134/S1022795412010061

    Article  CAS  Google Scholar 

  • Daldoul S, Toumi I, Reustle GM, Krczal G, Ghorbel A, Mliki A, Höfer MU (2012c) b) Molecular cloning and characterisation of a cDNA encoding a putative alkaline alpha-galactosidase from grapevine (Vitis vinifera L.) that is differentially expressed under osmotic stress. Acta Physiol Plant 34:891–903. https://doi.org/10.1007/s11738-011-0887-5

    Article  CAS  Google Scholar 

  • Daldoul S, Ben Amar A, Guillaumie S, Mliki A (2014) Integration of omics and system biology approaches to study grapevine (Vitis vinifera L.) response to salt stress: a perspective for functional genomics—a review. J Int Sci Vigne Vin 48:189–200

    Google Scholar 

  • Deng X-X, Zhang X-Q, Song X-J, Lai K-K, Guo L-B, Xin Y-Y, Wang H-Z, Xue D-W (2011) Response of transgenic rice at germination traits under salt and alkali stress. Afr J Agric Res 6(18):4335–4339

    Google Scholar 

  • Downie B, Bewley JD (2000) Soluble sugar content of white spruce (Picea glauca) seeds during and after germination. Physiol Plant 110:1–12

    Article  CAS  Google Scholar 

  • Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucl Acids Res 19:1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Z, Schaffer AA (1999) A novel alkaline alpha-galactosidase from melon fruit with a substrate preference for raffinose. Plant Physiol 119:979–988. https://doi.org/10.1104/pp119.3.979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta K, Agarwal PK, Reddy MK, Jha B (2010) SbDREB2A, an A-2 type DREB transcription factor from extreme halophyte Salicornia brachiata confers abiotic stress tolerance in Escherichia coli. Plant Cell Rep 29:1131–1137. https://doi.org/10.1007/s00299-010-0896-7

    Article  CAS  PubMed  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  CAS  PubMed  Google Scholar 

  • Hamman RA, Dami I, Walsh TM, Stushnoff C (1996) Seasonal carbohydrate changes and cold hardiness of Chardonnay and Riesling grapevines. Amer J Enol Vitic 47:31–36

    CAS  Google Scholar 

  • Hanana M, Deluc L, Fouquet R, Daldoul S, Léon C, Barrieu F, Ghorbel A, Mliki A, Hamdi S (2008) Identification et caractérisation d’un gène de réponse à la déshydratation rd22 chez la vigne (Vitis vinifera L.). CR Biol 331:569–578. https://doi.org/10.1016/j.crvi.2008.05.002

    Article  CAS  Google Scholar 

  • Hanana M, Daldoul S, Fouquet R, Deluc L, Leon C, Hoefer M, Barrieu F, Ghorbel A (2014) Identification and characterization of a seed-specific grapevine dehydrin involved inabiotic stress response within tolerant varieties. Turk J Bot 38:1157–1168. https://doi.org/10.3906/bot-1405-35

    Article  CAS  Google Scholar 

  • Hara M, Tokunaga K, Kuboi T (2008) Isolation of a drought-responsive alkaline α-galactosidase gene from New Zealand spinach. Plant Biotechnol 25:497–501

    Article  CAS  Google Scholar 

  • Heck GR, Dorsett C, Ho THD (1991) Cloning and characterization of a gene Sip1 associated with seed imbibition in barley. Direct submission to gene bank, M77475

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG et al (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231. https://doi.org/10.1126/science.227.4691.1229

    Article  CAS  Google Scholar 

  • Jamil M, Shik Rha E (2007) Response of Transgenic Rice at Germination and Early Seedling Growth Under Salt Stress. Pak J Biol Sci 10:4303–4306

    Article  PubMed  Google Scholar 

  • Jellouli N, Ben Jouira H, Skouri H, Gargouri A, Ghorbel A, Mliki A (2008) Proteomic analysis of Tunisian grapevine cultivar Razegui under salt stress. J Plant Physiol 165:471–481. https://doi.org/10.1016/j.jplph.2007.02.009

    Article  CAS  PubMed  Google Scholar 

  • Kuo TM, Van Middlesworth JF, Wolf WJ (1988) Content of raffinose oligosaccharides and sucrose in various plant seeds. J Agric Food Chem 36(1):32–36

    Article  CAS  Google Scholar 

  • Leatherwood WR, Pharr DM, Dean LO, Williamson JD (2007) Carbohydrate content and root growth in seeds germinated under salt stress. J Am Soc Hort Sci 132(6):876–882

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Pennycooke JC, Jones ML, Stushnoff C (2003) Down-regulating α-galactosidase enhances freezing tolerance in transgenic petunia. Plant Physiol 133:901–909. https://doi.org/10.1104/pp.103.024554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterbauer T, Mucha J, Mayer U, Popp M, Glössl J, Richter A (1999) Stachyose synthesis in seeds of adzukibean (Vignaangularis): molecular cloning and functional expression of stachyose synthase. Plant J 20:509–518

    Article  CAS  PubMed  Google Scholar 

  • Prieto-Dapena P, Castaño R, Almoguera C, Jordano J (2006a) Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol 142(3):1102–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieto-Dapena P, Castaño R, Almoguera C, Jordano J (2006b) Improved resistance to controlled deterioration in transgenic seeds. Plant Physiol 142(3):1102–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reisch BI, Owens CL, Cousins PS (2012) Grape. In: Badenes ML, Byrne DH (eds) Fruit breeding. Springer, New York, pp 225–262

    Chapter  Google Scholar 

  • Sengupta S, Mukherjee S, Basak P, Majumder AL (2015) Significance of galactinol and raffinose family oligosaccharide synthesis in plants. Front Plant Sci 6:656

    Article  PubMed  PubMed Central  Google Scholar 

  • Song N-H, Ahn Y-J (2011) DcHsp17.7 a small heat shock protein in carrot, is tissue-specifically expressed under salt stress and confers tolerance to salinity. New Biotechnol 28:698–704. https://doi.org/10.1016/j.nbt.2011.04.002

    Article  CAS  Google Scholar 

  • Töpfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH (1987) A set of plant expression vectors for transcriptional and translational fusions. Nucl Acids Res 15:5890

    Article  PubMed  PubMed Central  Google Scholar 

  • Trifa SH, Jedidi E, Harbi MBS (2015) Le Razzégui : caractérisation ampélographique, cytogénétique et moléculaire d’un cépage tunisien autochtone. J New Sci 16(5):574–582

    Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45:523–539

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Zhang L, Zhang Y, Bai Z, Liu H, Zhang D (2017) Triticum aestivum WRAB18 functions in plastids and confers abiotic stress tolerance when overexpressed in Escherichia coli and Nicotiania benthamiana. PLoS ONE 12(2):e0171340. https://doi.org/10.1371/journal.pone.0171340

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu H, Li K, Yang F, Shi Q, Wang X (2010) Overexpression of CsNMAPK in tobacco enhanced seed germination under salt and osmotic stresses. Mol Biol Rep 37(7):3157–3163

    Article  CAS  PubMed  Google Scholar 

  • Yadav NS, Singh VK, Singh D, Jha B (2014) A novel gene SbSI-2 encoding nuclear protein from a halophyte confers abiotic stress tolerance in E. coli and tobacco. PLoS ONE 9(7):e101926. https://doi.org/10.1371/journal.pone.0101926

    Article  PubMed  PubMed Central  Google Scholar 

  • Yucui Wu, Liu Congling, Kuang Jing, Ge Qian, Zhang Yuan, Wang Zhezhi (2014) Overexpression of SmLEA enhances salt and drought tolerance in Escherichia coli and Salvia miltiorrhiza. Protoplasma 251(5):1191. https://doi.org/10.1007/s00709-014-0626-z

    Article  Google Scholar 

  • Zhao TY, Willis CJ, Mullen J, Meeley RB, Helentjaris T, Martin D, Downie B (2006) An alkaline alpha-galactosidase transcript is present in maize seeds and cultured embryo cells, and accumulates during stress. Seed Sci Res 16:107–121

    Article  CAS  Google Scholar 

  • Zhou C, Chen R-J, Gao X-L, Li L-H, Xu Z-J (2014) Heterologous expression of a rice RNA-recognition motif gene OsCBP20 in Escherichia coli confers abiotic stress tolerance. POJ 7(1):28–34

    CAS  Google Scholar 

  • Zoglami N, Riahi L, Laucou V, Lacombe T, Ghorbel A, This P (2009) Origin and genetic diversity of Tunisian grapes as revealed by microsatellite markers. Sci Hortic 120:479–486. https://doi.org/10.1016/j.scienta.2008.12.011

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the Tunisian–German bilateral project (BMBF/Tunisian, Project Nr. TUNGER-2015-32) and a research grant of the German academic exchange service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Daldoul.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daldoul, S., Amar, A.B., Gargouri, M. et al. A Grapevine-Inducible Gene Vv-α-gal/SIP Confers Salt and Desiccation Tolerance in Escherichia coli and Tobacco at Germinative Stage. Biochem Genet 56, 78–92 (2018). https://doi.org/10.1007/s10528-017-9831-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-017-9831-8

Keywords

Navigation