Skip to main content

Advertisement

Log in

Temporal Variation in Genetic Structure of the Chinese Rare Minnow (Gobiocypris rarus) in Its Type Locality Revealed by Microsatellite Markers

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Gobiocypris rarus, an endemic cyprinid fish with high fecundity, lives mainly in small water systems easily influenced by changes in natural surroundings. This study used 11 polymorphic microsatellite primers to identify the temporal variation of its topotype population. Moderate genetic diversity, inbreeding phenomena, and limited temporal variation between 1997 and 2006 were revealed in the topotype population. The main temporal fluctuations involved only the change of allelic frequencies over two loci and allelic richness. The effective population size was estimated to be 645. The authors argue that inbreeding did not induce dramatic depression effects on the topotype population, and the forces to maintain genetic diversity were mainly from environmental fluctuations and life history traits. Considering that the topotype population is facing increased habitat loss, destruction, and disturbance due to human activities, the authors suggest that a habitat and species management area be established in the type locality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam MS, Islam MS (2005) Population genetic structure of Catla catla (Hamilton) revealed by microsatellite DNA markers. Aquaculture 246:151–160

    Article  CAS  Google Scholar 

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693

    Article  CAS  PubMed  Google Scholar 

  • Barcia AR, López GE, Hernández D, García-Machado E (2005) Temporal variation of the population structure and genetic diversity of Farfantepenaeus notialis assessed by allozyme loci. Mol Ecol 14:2933–2942

    Article  CAS  Google Scholar 

  • Berthier P, Beaumont MA, Cornuet J, Luikart G (2002) Likelihood-based estimation of the effective population size using temporal changes in allele frequencies: a genealogical approach. Genetics 160:741–751

    CAS  PubMed  Google Scholar 

  • Blanco G, Ramos MD, Vázquez E, Sánchez JA (2005) Assessing temporal and spatial variation in wild populations of Atlantic salmon with particular reference to Asturias (northern Spain) rivers. J Fish Biol 67(Suppl. A):169–184

    Article  CAS  Google Scholar 

  • Brookfield JFY (1996) A simple method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5:453–455

    CAS  PubMed  Google Scholar 

  • Castric V, Bernatchez L, Belkhir K, Bonhomme F (2002) Heterozygote deficiencies in small lacustrine populations of brook charr Salvelinus fontinalis Mitchill (Pisces, Salmonidae): a test of alternative hypothesis. Heredity 89:27–35

    Article  CAS  PubMed  Google Scholar 

  • Cena CJ, Morgan GE, Malette MD, Heath DD (2006) Inbreeding, outbreeding and environmental effects on genetic diversity in 46 walleye (Sander vitreus) populations. Mol Ecol 15:303–320

    Article  CAS  PubMed  Google Scholar 

  • Chen YY (1998) Fauna Sinica, Osteichthyes, Cypriniformes II. Science Press, Beijing, China, pp 51–52 (in Chinese)

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  Google Scholar 

  • Crispo E, Bentzen P, Reznick DN, Kinnison MT, Hendry AP (2006) The relative influence of natural selection and geography on gene flow in guppies. Mol Ecol 15:49–62

    Article  CAS  PubMed  Google Scholar 

  • Dewoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473

    Article  CAS  Google Scholar 

  • Ding RH (1994) The fishes of Sichuan, China. Sichuan Publishing House of Science and Technology, Chengdu (in Chinese)

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distance among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Florin A, Höglund J (2007) Absence of population structure of turbot (Psetta maxima) in the Baltic Sea. Mol Ecol 16:115–126

    Article  CAS  PubMed  Google Scholar 

  • Frankel OH, Soulé M (1981) Conservation and evolution. Cambridge University Press, Cambridge, England

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, New York

    Google Scholar 

  • Franklin IA (1980) Evolutionary change in small populations. In: Soulé ME, Wilcox BA (eds) Conservation biology: an evolutionary-ecological perspective. Sinauer Associates, Sunderland, MA, pp 135–150

    Google Scholar 

  • Garant D, Dodson JJ, Bernatchez L (2000) Ecological determinants and temporal stability of the within-river population structure in Atlantic salmon (Salmo salar L.). Mol Ecol 9:615–628

    Article  CAS  PubMed  Google Scholar 

  • Geng B, Sun XW, Liang LQ, Ouyang HS, Tong JG (2006) Microsatellite analysis of genetic diversity of Aristichthys nobilis in China. Hereditas 28(6):683–688

    CAS  PubMed  Google Scholar 

  • Goudet J (2001) Fstat, a program to estimate and test gene diversities and fixation indices (version 2.9.3). http://www2.unil.ch/popgen/softwares/fstat.htm

  • Guo S, Thompson E (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372

    Article  CAS  PubMed  Google Scholar 

  • Gutiérrez-Rodríguez C, Morris MR, Dubois NS, De Queiroz K (2007) Genetic variation and phylogeography of the swordtail fish Xiphophorus cortezi (Cyprinodontiformes, Poeciliidae). Mol Phylogenet Evol 43:111–123

    Article  PubMed  Google Scholar 

  • Huang Z, Liu N, Zhou T, Ju B (2005) Effects of environmental factors on the population genetic structure in chukar partridge (Alectoris chukar). J Arid Environ 62:427–434

    Article  Google Scholar 

  • Johnson MS, Black R (1984) The Wahlund effect and the geographical scale of variation in the intertidal limpet Siphonaria sp. Mar Biol 79:295–302

    Article  Google Scholar 

  • Le PQ, Chen YY (1998) China red data book of endangered animals: Pisces. Science Press, Beijing, pp 170–172 (in Chinese)

  • Lee HJ, Boulding EG (2007) Mitochondrial DNA variation in space and time in the northeastern Pacific gastropod, Littorina keenae. Mol Ecol 16:3084–3103

    Article  CAS  PubMed  Google Scholar 

  • Li L, Ma TW, Wu ZB (2004) Toxic effect of domestic sewage on rare minnow (Gobiocypris rarus). Acta Hydrobiol Sin 28(1):40–44 (in Chinese)

    Google Scholar 

  • Liao XL, Yu XM, Tan DQ, Tong JG (2005) Microsatellite DNA analysis of genetic diversity of grass carp in Yangtze River system. Acta Hydrobiol Sin 29(2):113–119 (in Chinese)

    CAS  Google Scholar 

  • Liao XL, Zhu B, Yu XM, Tan DQ, Chang JB, Tong JG (2006) Isolation and characterization of polymorphic microsatellites in a Yangtze River fish, brass gudgeon (Coreius heterodon Bleeker). Mol Ecol Notes 6:393–395

    Article  CAS  Google Scholar 

  • Liao XL, Wang D, Yu XM, Li WT, Cheng L, Wang JW, Tong JG (2007) Characterization of novel microsatellite loci in rare minnow (Gobiocypris rarus) and amplification in closely related species in Gobioninae. Conserv Genet 8:1003–1007

    Article  CAS  Google Scholar 

  • Lu L, Shen YW (2002) Acute toxicity of phenol, alkyl benzene, nitrobenzene and water sample to sword fish (Xiphophorus helleri) and rare minnow (Gobiocypris rarus). Res Environ Sci 15(4):57–59 (in Chinese)

    Google Scholar 

  • Mäkinen HS, Cano JM, Merilä J (2006) Genetic relationships among marine and freshwater populations of the European three-spined stickleback (Gasterosteus aculeatus) revealed by microsatellites. Mol Ecol 15:1519–1534

    Article  PubMed  Google Scholar 

  • Martínez-Cruz B, Godoy JA, Negro JJ (2007) Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Mol Ecol 16:477–486

    Article  PubMed  Google Scholar 

  • Mitton JB, Lewis WM Jr (1989) Relationships between genetic variability and life-history features of bony fishes. Evolution 43:1712–1723

    Article  Google Scholar 

  • Morand M-E, Brachet S, Rossignol P, Dufour J, Frascaria-Lacoste N (2002) A generalized heterozygote deficiency assessed with microsatellites in French common ash populations. Mol Ecol 11:377–385

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Tajima F (1981) Genetic drift and estimation of effective population size. Genetics 98:625–640

    PubMed  Google Scholar 

  • Nielsen EE, Hansen MM, Loeschcke V (1997) Analysis of microsatellite DNA from old scale samples of Atlantic salmon Salmo salar: a comparison of genetic composition over 60 years. Mol Ecol 6:487–492

    Article  CAS  Google Scholar 

  • Østergaard S, Hansen MM, Loeschcke V, Nielsen EE (2003) Long-term temporal changes of genetic composition in brown trout (Salmo trutta L.) populations inhabiting an unstable environment. Mol Ecol 12:3123–3135

    Article  PubMed  Google Scholar 

  • Rahman S, Zakaria-Ismail M, Tang PY, Muniandy S (2008) Microsatellite analysis of wild and captive populations of Asian arowana (Scleropages formosus) in Peninsular Malaysia. J Biol Sci 8(3):517–525

    Article  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rice WR (1989) Analysing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Roark SA, Andrews JF, Guttman SI (2001) Population genetic structure of the Western mosquitofish, Gambusia affinis, in a highly channelized portion of the San Antonio River in San Antonio, TX. Ecotoxicology 10:223–227

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Scribner KT, Wooten MC, Smith MH, Kennedy PK, Rhodes OE Jr (1992) Variation in life history and genetic traits of Hawaiian mosquitofish populations. J Evol Biol 5:267–288

    Article  Google Scholar 

  • Shao Y, Wang JW, He YF, Cao WX, Tong JG (2009) The application of microsatellite markers on genetic quality control of an inbred strain of Gobiocypris rarus. Acta Hydrobiol Sin 33(4):649–655 (in Chinese)

    Article  CAS  Google Scholar 

  • Templeton AR (2006) Population genetics and microevolutionary theory. John Wiley & Sons, Hoboken, NJ

    Book  Google Scholar 

  • Tessier N, Bernatchez L (1999) Stability of population structure and genetic diversity across generations assessed by microsatellites among sympatric populations of landlocked Atlantic salmon (Salmo salar L.). Mol Ecol 8:169–179

    Article  Google Scholar 

  • van Oosterhout C, Hutchinson B, Wills D, Shipley P (2003) Micro-Checker, microsatellite data checking software. http://www.microchecker.hull.ac.uk/

  • Wang JW (1992) Reproductive biology of Gobiocypris rarus. Acta Hydrobiol Sin 16(2):165–174 (in Chinese)

    CAS  Google Scholar 

  • Wang JW (1996) Studies on critical temperature of Gobiocypris rarus. Sichuan Zool 15(4):153–155 (in Chinese)

    Google Scholar 

  • Wang JW (1999) Spawning performance and development of oocytes in Gobiocypris rarus. Acta Hydrobiol Sin 23(2):161–166 (in Chinese)

    CAS  Google Scholar 

  • Wang JW, Cao WX (1997) Gobiocypris rarus and fishes as laboratory animals. Trans Chinese Ichthyol Soc 6:144–152 (in Chinese)

    Google Scholar 

  • Wang S, Xie Y (eds) (2004) China species red list: red list, vol 1. Higher Education Press, Beijing, p 154 (in Chinese)

  • Wang ZH, Yin YW, Xu ZN, Zhou J, Zhang Q, Zhang DP (1998) Acute and subchronic toxicity of pyrethroid insecticides to Gobiocypris rarus. Chinese Appl Environ Biol 4(4):379–382 (in Chinese)

    CAS  Google Scholar 

  • Waples RS (1989) A generalized approach for estimating effective population size from temporal changes in allele frequency. Genetics 121:379–391

    CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wu GQ, Sun XB, Chen JP, Xu LH, Wu ZB (2000) Acute toxicity of domestic detergents on fishes. Acta Hydrobiol Sin 24(4):396–398 (in Chinese)

    Google Scholar 

  • Xiong DM, Xie CX, Xia L (2007) Threatened fishes of the world: Gobiocypris rarus Ye and Fu, 1983 (Cyprinidae). Environ Biol Fish. doi:10.1007/s10641-007-9284-8

  • Xu SY, Zhang Y, Wang DQ, Li ZH, Chen DQ (2007) Genetic diversity in largemouth bronze gudgeon (Coreius guichenoti Sauvage et Dabry) from Yibin section of Yangtze River based on sequence of microsatellite DNA. Freshw Fish 37(3):76–79 (in Chinese)

    Google Scholar 

  • Ye MR, Fu TY (1983) Description of a new genus and species of Danioninae from China (Cypriniformes: Cyprinidae). Acta Zootaxon Sin 8(4):434–437 (in Chinese)

    Google Scholar 

  • Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16

    Article  CAS  PubMed  Google Scholar 

  • Zhou YX, Cheng SP, Hu W (1995) The Gobiocypris rarus seven-day subchronic toxicity test. Acta Sci Circum 15(3):375–380 (in Chinese)

    CAS  Google Scholar 

Download references

Acknowledgments

The authors are most grateful to Zhu B, Que YF, Xiang W, and Cheng L for their technical assistance. We also thank Professors Tong JG and Zhang FT for discussing the manuscript with us and Dr. Cândida Shinn for assisting with English phrasing. This research was supported by funds from the NSFC (30670292), Science Innovation of Chinese Academy of Sciences (KSCX2-SW-125), and the technological fundamental conditions platform program by China Hubei Provincial Science and Technology Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianwei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Wang, J. Temporal Variation in Genetic Structure of the Chinese Rare Minnow (Gobiocypris rarus) in Its Type Locality Revealed by Microsatellite Markers. Biochem Genet 48, 312–325 (2010). https://doi.org/10.1007/s10528-009-9324-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-009-9324-5

Keywords

Navigation