Skip to main content

Advertisement

Log in

Risks of biological control for conservation purposes

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Striking successes in classical biological control in agriculture and rangelands engender great interest in using this technology for wildlands conservation and environmental purposes. However, well known unintended consequences of several biological control projects have led to concern that possible environmental benefits do not warrant inherent risks. Four risks demand attention: (1) direct attack on non-targets; (2) indirect effects on non-targets; (3) dispersal of a biocontrol agent to a new area, either autonomously or with deliberate or inadvertent human assistance; (4) changed relationships between a control agent and a native species, particularly as generated by global climate change. Procedures for assessing risk of direct attack on non-targets by phytophagous biological control agents have steadily improved and an expanded centrifugal phylogenetic approach appears to provide adequate insight. Direct non-target impacts by entomophages are more difficult to predict. Myriad possible indirect effects, some subtle but nonetheless important, present a far greater challenge, and techniques of assessing such risks are in their earliest infancy and not as closely regulated. Despite prominent examples in both the general invasion literature and that for biological control, the risk that a species, once introduced, will spread beyond its intended range, and the consequences of such spread, are not routinely treated by risk assessors. This phenomenon deserves far more attention. Global changes—especially climate change—can lead to modified ranges and efficacies of introduced biological control agents and their targets. Although many examples show that climatic niches are often not conserved, an important first routine step would be to combine climatic envelopes with general circulation models for predicted future climates. Finally, actions based on a risk assessment are always implemented in a framework of predicted costs and benefits, which are inevitably asymmetric, so it is critically important that all stakeholders, including conservationists, participate in the decision-making process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Asner GP, Vitousek PM (2005) Remote analysis of biological invasion and biogeochemical change. Proc Nat Acad Sci (USA) 102:4383–4386

    Article  CAS  Google Scholar 

  • Babendreier D, Bigler F, Kuhlmann U (2006) Current status and constraints in the assessment of non-target effects. In: Bigler E, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods. Methods and risk assessment. CABI Publishing, Wallingford, pp 1–14

    Chapter  Google Scholar 

  • Barratt BIP, Howarth FG, Withers TM, Kean M, Ridley GS (2010) Progress in risk assessment for classical biological control. Biol Control 52:245–254

    Article  Google Scholar 

  • Bauer LS, Liu H-P (2007) Oobius agrili (Hymenoptera: Encyrtidae), a solitary egg parasitoid of emerald ash borer from China. In: Proceedings of the 2006 Emerald Ash Borer Research and Technology Development Meeting, Cincinnati. U.S.D.A. Forest Service FHTET-2007-04, pp 63–64

  • Bauer LS, Liu H, Miller D, Gould J (2008) Developing a classical biological control program for Agrilus planipennis (Coleoptera: Buprestidae), an invasive ash pest in North America. Newsl Michigan Entomol Soc 53:38–39

    Google Scholar 

  • Beaumont LJ, Gallagher RV, Thuiller W, Downey PO, Leishman MR, Hughes L (2009) Different climatic envelopes among invasive populations may lead to underestimations of current and future biological invasions. Divers Distrib 15:409–420

    Article  Google Scholar 

  • Bezemer TM, Jones TH (1998) Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82:212–222

    Article  Google Scholar 

  • Bigler F, Kölliker-Ott UM (2006) Balancing environmental risks and benefits: a basic approach. In: Bigler E, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods. Methods and risk assessment. CABI Publishing, Wallingford, pp 273–290

    Chapter  Google Scholar 

  • Booth RG, Cross AE, Fowler SV, Shaw RH (2001) Case study 5.24. Biological control of an insect to save an endemic tree on St. Helena. In: Wittenberg R, Cock MJW (eds) Invasive alien species: a toolkit of best prevention and management practices. CAB International, Wallingford, p 192

    Google Scholar 

  • Bradley BA, Wilcove DS, Oppenheimer M (2010) Climate change increases risk of plant invasion in the Eastern United States. Biol Invasions 12:1855–1872

    Article  Google Scholar 

  • Broennimann O, Guisan A (2008) Predicting current and future biological invasions: both native and invaded ranges matter. Biology Letters 4:584–589

    Article  Google Scholar 

  • Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic shift during biological invasion. Ecol Lett 10:701–709

    Article  PubMed  CAS  Google Scholar 

  • Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G (2010) Uncertainty in ensemble forecasting of species distribution. Global Change Biol 16:1145–1157

    Article  Google Scholar 

  • Callaway RM, DeLuca TH, Belliveau WM (1999) Biological-control herbivores may increase competitive ability of the noxious weed Centaurea maculosa. Ecology 80:1196–1201

    Google Scholar 

  • Callaway RM, Thelen GC, Barth S, Ramsey PW, Gannon JE (2004) Soil fungi alter interactions between the invader Centaurea maculosa and North American natives. Ecology 85:1062–1071

    Article  Google Scholar 

  • Caltagirone LE, Doutt RL (1989) The history of the vedalia beetle importation to California and its impact on the development of biological control. Ann Rev Entomol 34:1–16

    Article  Google Scholar 

  • Carson R (1962) Silent spring. Houghton Mifflin, Boston

  • Caut S, Casanovas JG, Virgos E, Lozano J, Witmer GW, Courchamp F (2007) Rats dying for mice: modelling the competitor release effect. Austral Ecol 32:858–868

    Article  Google Scholar 

  • Center TD, Frank JH, Dray FA Jr (1997) Biological control. In: Simberloff D, Schmitz DC, Brown TC (eds) Strangers in paradise. Impact and management of nonindigenous species in Florida. Island Press, Washington, DC, pp 245–263

    Google Scholar 

  • Cheah CAS-J, McClure MS (2000) Seasonal synchrony of life cycles between the exotic predator, Pseudoscymnus tsugae (Coleoptera: Coccinellidae) and its prey, the hemlock woolly adelgid Adelges tsugae (Homoptera: Adelgidae). Agricult Forest Entomol 2:241–251

    Article  Google Scholar 

  • Cheah C, Montgomery M, Salem S, Parker B, Skinner M, Costa S (2004) Biological control of hemlock woolly adelgid. FHTET-2004–2004. U.S.D.A. Forest Service, Morgantown

    Google Scholar 

  • Chew M (2009) The monstering of tamarisk: How scientists made a plant into a problem. J Hist Biol 42:231–266

    Article  PubMed  Google Scholar 

  • Civeyrel L, Simberloff D (1996) A tale of two snails: is the cure worse than the disease? Biodiver Conserv 5:1231–1252

    Article  Google Scholar 

  • Colautti RI, Niimi AJC, van Overdijk DA, Mills EL, Holeck K, MacIsaac HJ (2003) Spatial and temporal analysis of transoceanic shipping vectors to the Great Lakes. In: Ruiz GM, Carlton JT (eds) Invasive species. Vectors and management strategies. Island Press, Washington, D.C, pp 227–246

    Google Scholar 

  • Courchamps F, Langlais M, Sugihara G (1999) Cats protecting birds: modelling the mesopredator release effect. J Anim Ecol 68:282–292

    Article  Google Scholar 

  • Cowie RH (2002) Invertebrate invasions on Pacific islands and the replacement of unique native faunas: a synthesis of the land and freshwater snails. Biol Invasions 3:119–136

    Article  Google Scholar 

  • Cowie RH (2011) Snails and slugs. In: Simberloff D, Rejmánek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, pp 634–643

    Google Scholar 

  • D’Antonio CM, Mack M (2001) Exotic grasses potentially slow invasion of N-fixing tree into a Hawaiian woodland. Biol Invasions 3:69–73

    Article  Google Scholar 

  • D’Antonio CM, Vitousek PM (1992) Biological invasions by exotic grasses, the grass/fire cycle, and global change. Ann Rev Ecol Syst 23:63–87

    Google Scholar 

  • Dark S (2009) Beetles attack! City Weekly (Salt Lake City, Utah), March 11. http://www.cityweekly.net/utah/article-7512-beetles-attack.html, accessed 21 Dec 2010

  • DeLoach CJ (1990) Prospects for biological control of saltcedar (Tamarix spp.) in riparian habitats of the southwestern United States. In: Delfosse ES (ed) Proceedings of the VII international symposium on biological control of weeds, 6–11 March 1988, Rome, Italy. Istituto Sperimentale per la Patologia Vegetale. Ministero dell’Agricoltura e delle Foreste, Rome, Italy, pp 307–314

  • DeLoach CJ, Knutson AE, Moran PJ, Michels GDJ, Thompson DC, Carruthers RI, Nibling F, Fain TG (2007) Biological control of saltcedar (Cedro salado) (Tamarix spp.) in the United States, with implications for Mexico. In: Lira-Saldiar RH (ed), Bioplaguicidas y control biológico. Simposia Internacional de Agricultura Sustentable, 23–26 October 2007, Saltillo, Mexico. Centro de Investigación en Química Aplicada, Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, Mexico, pp 142–172

  • Dhileepan K, Bayliss D, Treviño M (2010) Thermal tolerance and potential distribution of Carvalhotingis visenda (Hemiptera: Tingidae), a biological control agent for cat’s claw creeper, Macfadyena unguis-cati (Bignoniaceae). Bull Entomol Res 100:159–166

    Article  PubMed  CAS  Google Scholar 

  • DiTomaso JM (1998) Impact, biology, and ecology of saltcedar (Tamarix spp.) in the southwestern United States. Weed Technol 12:326–336

    Google Scholar 

  • Dodd AP (1940) The biological campaign against prickly pear. Commonwealth Prickly Pear Board Bulletin, Brisbane, Australia

    Google Scholar 

  • Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80

    Article  Google Scholar 

  • Fitzpatrick MC, Weltzin JF, Sanders NJ, Dunn RR (2007) The biogeography of prediction error: why does the introduced range of the fire ant over-predict its native range? Global Ecol Biogeog 16:24–33

    Article  Google Scholar 

  • Freinkel S (2007) American chestnut. The life, death, and rebirth of a perfect tree. University of California Press, Berkeley

    Google Scholar 

  • Goldson SL (2007) Climate change and biological control. In: Paul C, Newton D, Carran RA, Edwards GR, Niklaus PA (eds) Agroecosystems in a changing climate. CRC Press, Boca Raton, pp 329–332

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Hawaiian Ecosystems at Risk (2010) http://www.hear.org/species/morella_faya/, accessed 28 Nov 2010

  • Hays WST, Conant S (2007) Biology and impacts of Pacific island invasive species. 1. A worldwide review of effects of the small Indian mongoose, Herpestes javanicus (Carnivora: Herpestidae). Pacific Sci 61:3–16

    Article  Google Scholar 

  • Hespenheide HA (1996) Buprestidae. In: Llorente BJ, Garcia AAN, González SE (eds) Biodiversidad, taxonomia y biogeografia de artrópodos de México. Hacia una Síntesis de su Conocimiento. Universidad Nacional de México, Instituto de Biología, Mexico City, pp 411–421

  • Hill JK, Hodkinson ID (1992) Effects of temperature on phenological synchrony and altitudinal distribution of jumping plant lice (Hemiptera; Psylloidea) on dwarf willow (Salix lapponum) in Norway. Ecol Entomol 20:237–244

    Article  Google Scholar 

  • Holt RD, Hochberg ME (2001) Indirect interactions, community modules and biological control: a theoretic perspective. In: Wajnberg E, Scott JK, Quimby PC (eds) Evaluating indirect ecological effects of biological control. CABI, Wallingford, pp 13–37

    Google Scholar 

  • Huffaker CB, Kennett CE (1959) A ten-year study of vegetation changes associated with biological control of Klamath weed. J Range Mgt 12:69–82

    Article  Google Scholar 

  • Julien MH, Center TD, Tipping PW (2002) Floating fern (Salvinia). In: van Driesche R, Blossey B, Hoddle M, Lyon S, Reardon R (eds) Biological control of invasive plants in the Eastern United States (FHTET-2002–2004). United States Department of Agriculture Forest Service. Forest Health Technology Enterprise Team, Morgantown, Morgantown, pp 17–32

    Google Scholar 

  • Karban R, Hougen-Eitzmann D, English-Loeb G (1994) Predator-mediated apparent competition between two herbivores that feed on grapevines. Oecologia 97:508–511

    Article  Google Scholar 

  • Koch RL, Glavan TL (2008) Bad side of a good beetle: the North American experience with Harmonia axyridis. BioControl 53:23–35

    Article  Google Scholar 

  • Koch RL, Venette RC, Hutchinson WD (2006) Invasions by Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) in the western hemisphere: Implications for South America. Neotropical Entomol 35:421–434

    Article  Google Scholar 

  • Krivánek M, Pyšek P, Jarosik V (2006) Planting history and propagule pressure as predictors of invasion by woody species in a temperate region. Conserv Biol 20:1487–1498

    Article  PubMed  Google Scholar 

  • Kuhlmann U, Schaffner U, Mason PG (2006) Selection of non-target species for host specificity testing. In: Bigler E, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods. Methods and risk assessment. CABI Publishing, Wallingford, pp 15–37

    Chapter  Google Scholar 

  • Liu H-P, Bauer LS (2007) Tetrastichus planipennisi (Hymenoptera: Eulophidae), a gregarious larval endoparasitoid of emerald ash borer from China. In: Proceedings of the 2006 emerald ash borer research and technology development meeting, Cincinnati. U.S.D.A. Forest Service FHTET-2007-04, pp 61–62

  • Loo SE, MacNally R, Lake PS (2007) Forecasting New Zealand mud snail invasion range: model comparisons using native and invaded ranges. Ecol Applic 17:181–189

    Article  Google Scholar 

  • Louda SM, O’Brien CW (2002) Unexpected ecological effects of distributing the exotic weevil, Larinus planus (F.), for biological control of Canada thistle. Conserv Biol 16:717–727

    Article  Google Scholar 

  • Louda SM, Kendall D, Connor J, Simberloff D (1997) Ecological effects of an insect introduced for the biological control of weeds. Science 277:1088–1090

    Article  CAS  Google Scholar 

  • Louda SM, Arnett AE, Rand A, Russell FL (2003) Invasiveness of some biological control insects and adequacy of their ecological risk assessment and regulation. Conserv Biol 17:73–82

    Article  Google Scholar 

  • Lowe S, Browne M, Boudjelas S (2001) 100 of the world’s worst invasive alien species. A selection from the global invasive species database. IUCN-ISSG, Auckland

    Google Scholar 

  • Mack MC, D’Antonio CM (2003) The effects of exotic grasses on litter decomposition in a Hawaiian woodland: the importance of indirect effects. Ecosystems 6:723–738

    Article  Google Scholar 

  • Mack MC, D’Antonio CM, Ley RE (2001) Alteration of ecosystem nitrogen dynamics by exotic plants: a case study of C4 grasses in Hawaii. Ecol Applic 11:1323–1335

    Google Scholar 

  • Marsico TD, Wallace LE, Ervin.N, Brooks CP, McClure JE, Welch ME (2011) Geographic patterns of genetic diversity from the native range of Cactoblastis cactorum (Berg) support the documented history of invasion and multiple introductions for invasive populations. Biol Invasions 13:857–868

    Google Scholar 

  • Master LL, Stein BA, Kutner LS, Hammerson GA (2000) Vanishing assets. Conservation status of U.S. species. In: Stein BA, Kutner LS, Adams JS (eds) Precious heritage. The status of biodiversity in the United States. Oxford University Press, New York, pp 93–118

    Google Scholar 

  • Mead C, Kaldor J, Canton M, Gamer G, Crerar S, Thomas S (1996) Rabbit calicivirus and human health. Department of Primary Industries and Energy, Australian Government, Canberra

    Google Scholar 

  • Medley KA (2010) Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global Ecol Biogeogr 19:122–133

    Article  Google Scholar 

  • Messing RH (2001) Centrifugal phylogeny as a basis for non-target host testing in biological control: is it relevant for parasitoids? Phytoparasitica 29:187–189

    Article  Google Scholar 

  • Messing R, Roitberg B, Brodeur J (2006) Measuring and predicting indirect impacts of biological control: competition, displacement and secondary interactions. In: Bigler F, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods. CABI Publishing, Wallingford, pp 64–77

    Chapter  Google Scholar 

  • Mulvaney M (2001) The effect of introduction pressure on the naturalization of ornamental woody plants in south-eastern Australia. In: Panetta FD, Virtue JG, Groves RH (eds) Weed risk assessment. CSIRO Publishing, Collingwood, pp 186–193

    Google Scholar 

  • Murphy ST, Evans HC (2009) Biological control of invasive species. In: Clout MN, Williams PA (eds) Invasive species management. A handbook of principles and techniques. Oxford University Press, Oxford, pp 77–92

    Google Scholar 

  • NatureServe (2010) http://www.natureserve.org. Accessed 5 Nov 2010

  • New Zealand Parliamentary Commissioner for the Environment (1998) The rabbit calicivirus (RCD) saga: a biosecurity/bio-control fiasco. Parliamentary Commissioner for the Environment, Wellington

    Google Scholar 

  • Orrell TM, Weigt L (2005) The northern snakehead Channa argus (Anabantomorpha: Channidae), a non-indigenous fish species in the Potomac River. USA Proc Biol Soc Washington 118:407–415

    Article  Google Scholar 

  • Ortega Y, Pearson DE, McKelvey KS (2004) Effects of biological control agents and exotic plant invasion on deer mouse populations. Ecol Applic 14:241–253

    Article  Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Pearson DE, Callaway RM (2003) Indirect effects of host-specifc biological control agents. Trends Ecol Evol 18:456–461

    Article  Google Scholar 

  • Pemberton RW (1984) Native plant considerations in the biological control of leafy spurge. In: Delfosse ES (ed) Proceedings of the VI international symposium for the biological control, August 19–25. Agriculture Canada, Vancouver, pp 365–390

  • Pemberton RW (1995) Cactoblastis cactorum (Lepidoptera: Pyralidae) in the United States: an immigrant biological control agent or an introduction of the nursery industry? Amer Entomol 41:230–232

    Google Scholar 

  • Pemberton RW (2000) Predictable risk to native plants in weed biological control. Oecologia 125:489–494

    Article  Google Scholar 

  • Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267

    Article  PubMed  CAS  Google Scholar 

  • Rafter MA, Wilson AJ, Wilmot Senaratne KAD, Dhileepan K (2008) Climatic-requirements models of cat’s claw creeper Macfadyena unguis-cati (Bignoniaceae) to prioritise areas for exploration and release of biological control agents. Biol Control 44:169–179

    Article  Google Scholar 

  • Rödder D, Lötters S (2009) Niche shift versus niche conservatism? Climatic characteristics of the native and invasive ranges of Mediterranean house gecko. Global Ecol Biogeogr 18:674–687

    Article  Google Scholar 

  • Room PM, Forno IW, Taylor MFJ (1984) Establishment in Australia of two insects for biological control of the floating weed Salvinia molesta. Bull Entomol Res 74:505–516

    Article  Google Scholar 

  • Roy H, Wajnberg E (2008) From biological control to invasion: the ladybird Harmonia axyridis as a model species. BioControl 53:1–4

    Article  Google Scholar 

  • Schneider DW, Ellis CD, Cummings KS (1998) A transportation model assessment of risk to native mussel communities of zebra mussel spread. Conserv Biol 12:788–800

    Article  Google Scholar 

  • Semmens BX, Buhle ER, Salomon AK, Pattengill-Semmens C (2004) A hotspot of non-native aquarium fishes: evidence for the aquarium trade as an invasion pathway. Mar Ecol Progr Ser 266:239–244

    Article  Google Scholar 

  • Simberloff D (1992) Conservation of pristine habitats and unintended effects of biological control. In: Kauffman WC, Nechols JE (eds) Selection criteria and biological consequences of importing natural enemies. Entomological Society of America, Baltimore, pp 103–114

    Google Scholar 

  • Simberloff D (2005) The politics of assessing risk for biological invasions: the USA as a case study. Trends Ecol Evol 20:216–222

    Article  PubMed  Google Scholar 

  • Simberloff D (2011) How common are invasion-induced ecosystem impacts? Biol Invasions 13:1255–1268

    Google Scholar 

  • Simberloff D, Stiling P (1996) Risks of species introduced for biological control. Biol Conserv 78:185–192

    Article  Google Scholar 

  • Simmonds FJ, Bennett FP (1966) Biological control of Opuntia spp. by Cactoblastis cactorum in the Leeward Islands (West Indies). Entomophaga 11:183–189

    Article  Google Scholar 

  • Smith CW (2002) Forest pest biological control program in Hawaii. In: Smith CW, Denslow J, Hight S (eds), Proceedings of workshop on biological control of native ecosystems in Hawaii. Pacific Cooperative Studies Unit (University of Hawaii at Manoa, Department of Botany) Technical Report 129. University of Hawaii at Manoa, Manoa, pp 91–98

  • Strauss SY (1991) Indirect effects in community ecology: their definition, study and importance. Trends Ecol Evol 6:206–210

    Article  PubMed  CAS  Google Scholar 

  • Sutherst RW, Maywald GF, Bourne AS (2004) CLIMEX Version 2. User’s guide. Hearne Scientific Software Inc, Melbourne

    Google Scholar 

  • Thomson LJ, Macfadyen S, Hoffmann AA (2010) Predicting the effects of climate change on natural enemies of agricultural pests. Biol Control 54:296–306

    Article  Google Scholar 

  • Thorpe AS, Archer V, DeLuca TH (2006) The invasive forb, Centaurea maculosa, increases phosphorus availability in Montana grasslands. Appl Soil Ecol 23:118–122

    Article  Google Scholar 

  • Tuduri JCG, Martorell LF, Gaud SM (1971) Geographical distribution and host plants of the cactus moth, Cactoblastis cactorum (Berg) in Puerto Rico and the United States Virgin Islands. J Agric Univ Puerto Rico 55:130–134

    Google Scholar 

  • U.S. Department of Agriculture (2010) Memorandum: USDA APHIS PPQ Moratorium for biological control of saltcedar (Tamarix species) using the biological control agent Diorhabda species (Coleoptera: Chrysomelidae). June 10, Riverdale, Maryland

  • U.S. Department of the Interior (Fish and Wildlife Service) (1997) Endangered and threatened wildlife and plants; Determination of Endangered status for two tidal marsh plants—Cirsium hydrophilum var. hydrophilum (Suisun Thistle) and Cordylanthus mollis ssp. mollis (Soft Bird’s-Beak) from the San Francisco Bay area of California. 50 CFR Part 17, Federal Register 62(224):61916–61921

  • van Driesche R, Hoddle M, Center T (2008) Control of pests and weeds by natural enemies. An introduction to biological control. Blackwell, Malden

  • van Lenteren JC, Babendreier D, Bigler F, Burgio G, Hokkanen HMT, Kuske S, Loomans AJM, Menzler-Hokkanen I, Van Rijn PCJ, Thomas MB, Tommasini MG, Zeng Q-Q (2003) Environmental risk assessment of exotic natural enemies used in inundative biological control. BioControl 48:3–38

    Google Scholar 

  • van Nouhuys S, Lei G (2004) Parasitoid–host metapopulation dynamics: the causes and consequences of phenological asynchrony. J Anim Ecol 73:526–535

    Google Scholar 

  • Vitousek PM (1986) Biological invasions and ecosystem properties: can species make a difference? In: Mooney HA, Drake JA (eds) Ecology of biological invasions of North America and Hawaii. Springer, New York, pp 163–176

    Chapter  Google Scholar 

  • Vitousek PM, Walker LR (1989) Biological invasion by Myrica faya in Hawai’i: plant demography, nitrogen fixation, ecosystem effects. Ecol Monogr 59:247–265

    Article  Google Scholar 

  • Vitousek PM, Walker LR, Whittaker LD, Mueller-Dombois D, Matson PA (1987) Biological invasion by Myrica faya alters ecosystem development in Hawaii. Science 238:802–804

    Article  PubMed  CAS  Google Scholar 

  • Wapshere AJ (1974) A strategy for evaluating the safety of organisms for biological weed control. Ann Appl Biol 77:201–211

    Article  Google Scholar 

  • Whitfield JB, Wagner DL (1988) Patterns in host ranges within the Nearctic species of the parasitoid genus Pholetesor Mason (Hymenoptera: Braconidae). Environm Entomol 17:608–615

    Google Scholar 

  • Wootton JT (1994) Predicting direct and indirect effects: an integrated approach using experiments and path analysis. Ecology 75:151–165

    Article  Google Scholar 

  • Yang Z-Q, Wang X-Y, Gould JR, Wu H (2008) Host specificity of Spathius agrili Yang (Hymenoptera: Braconidae), an important parasitoid of the emerald ash borer. Biol Control 47:216–221

    Article  Google Scholar 

  • Zavaleta ES (2002) It’s often better to eradicate, but can we eradicate better? In: Veitch CR, Clout MN (eds) Turning the tide: the eradication of invasive species. IUCN Species Survival Commission, Gland, Switzerland, pp 393–403

    Google Scholar 

  • Zilahi-Balogh GMG, Kok LT, Salom SM (2002) Host specificity of Laricobius nigrinus Fender (Coleoptera: Derodontidae), a potential biological control agent of the hemlock woolly adelgid, Adelges tsugae Annand (Homoptera: Adelgidae). Biol Control 24:192–198

    Article  Google Scholar 

  • Zimmermann HG, Moran VC, Hoffmann JH (2000) The renowned cactus moth, Cactoblastis cactorum: its natural history and threat to native Opuntia in Mexico and the United States of America. Diversity Distrib 6:259–269

    Article  Google Scholar 

  • Zwölfer H, Harris P (1971) Host specificity determination of insects for biological control of weeds. Annu Rev Entomol 16:159–178

    Article  Google Scholar 

  • Zwölfer H, Harris P (1984) Biology and host specificity of Rhinocyllus conicus (Froel.)(Col., Curculionidae), a successful agent for biocontrol of the thistle, Carduus nutans. Zeitschr Angewandte Entomol 97:36–62

    Article  Google Scholar 

Download references

Acknowledgments

Roy van Driesche encouraged me to write this paper, while Lucy Jordan, Tom Dudley, and Henry Hespenheide provided important information on particular cases. Two anonymous referees provided useful comments on an early draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Simberloff.

Additional information

Handling Editor: Roy van Driesche

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simberloff, D. Risks of biological control for conservation purposes. BioControl 57, 263–276 (2012). https://doi.org/10.1007/s10526-011-9392-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-011-9392-4

Keywords

Navigation