Skip to main content

Advertisement

Log in

Role of sestrins in metabolic and aging-related diseases

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Sestrins are a type of highly conserved stress-inducing protein that has antioxidant and mTORC1 inhibitory functions. Metabolic dysfunction and aging are the main risk factors for development of human diseases, such as diabetes, neurodegenerative diseases, and cancer. Sestrins have important roles in regulating glucose and lipid metabolism, anti-tumor functions, and aging by inhibiting the reactive oxygen species and mechanistic target of rapamycin complex 1 pathways. In this review, the structure and biological functions of sestrins are summarized, and how sestrins are activated and contribute to regulation of the downstream signal pathways of metabolic and aging-related diseases are discussed in detail with the goal of providing new ideas and therapeutic targets for the treatment of related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AMPK:

Adenosine 5′-monophosphate (AMP)-activated protein kinase

AREs:

Antioxidant response elements

ATF4:

Activating transcription factor 4

ATF6:

Activating transcription factor 6

ATM:

Ataxia-telangiectasia mutated

ATR:

Ataxia-telangiectasia and RAD3-related

C/EBPβ:

CCAAT/enhancer-binding protein beta

ER:

Endoplasmic reticulum

ERK:

Extracellular signal-regulated kinases

FoxO1:

Forkhead box protein O1

FoxO3:

Forkhead box protein O3

GATOR:

GTPase-activating protein (GAP) activity towards rags

GLI2:

Glioma-associated oncogene family zinc finger 2

GRB10:

Growth factor receptor binding protein 10

HIF l:

Hypoxia-inducible factor l

IGF1:

Insulin-like growth factor 1

IRE1:

Inositol-requiring enzyme 1

JNK:

C-Jun N-terminal kinase

KEAP1:

Kelch-like epichlorohydrin-associated protein 1

MAPK:

Mitogen-activated protein kinases

mTORC1:

Mechanistic target of rapamycin complex 1

mTORC2:

Mechanistic target of rapamycin complex 2

NLRP3:

NOD-like receptor family, pyrin domain containing protein 3

NMDAR:

N-methyl-D aspartate receptor

Nrf2:

Nuclear factor erythroid 2-related factor 2

PERK:

Protein kinase RNA-like endoplasmic reticulum kinase

PI3K:

Phosphatidylinositol 3-kinase

PRX:

Peroxiredoxin

PTEN:

Phosphatase and tensin homology deleted on chromosome ten

Rags:

Ras-related GTPase

Rheb:

Ras homolog enriched in brain

ROS:

Reactive oxygen species

Smad3:

Drosophila mothers against decapentaplegic homolog 3

SQSTM1:

Sequestosome 1

SREBP:

Sterol regulatory element binding protein

SRX:

Sulfiredoxin

S6K1:

Ribosomal protein S6 kinase, polypeptide 1

TGF-β:

Transforming growth factor beta

TRX1:

Thioredoxin-1

TSC1:

Tuberous sclerosis complex 1

TSC2:

Tuberous sclerosis complex 2

ULK1:

Unc-51 like autophagy activating kinase 1

XBP1:

X-box binding protein

References

  • Abe Y, Yoon SO, Kubota K, Mendoza MC, Gygi SP, Blenis J (2009) p90 ribosomal S6 kinase and p70 ribosomal S6 kinase link phosphorylation of the eukaryotic chaperonin containing TCP-1 to growth factor, insulin, and nutrient signaling. J Biol Chem 284(22):14939–14948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreyev AY, Kushnareva YE, Starkov AA (2005) Mitochondrial metabolism of reactive oxygen species. Biochemistry (mosc) 70(2):200–214

    Article  CAS  PubMed  Google Scholar 

  • Armata HL, Golebiowski D, Jung DY, Ko HJ, Kim JK, Sluss HK (2010) Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis. Mol Cell Biol 30(24):5787–5794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bae SH, Sung SH, Oh SY et al (2013) Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab 17(1):73–84

    Article  CAS  PubMed  Google Scholar 

  • Ben-Sahra I, Dirat B, Laurent K et al (2013) Sestrin2 integrates Akt and mTOR signaling to protect cells against energetic stress-induced death. Cell Death Differ 20(4):611–619

    Article  CAS  PubMed  Google Scholar 

  • Brüning A, Rahmeh M, Friese K (2013) Nelfinavir and bortezomib inhibit mTOR activity via ATF4-mediated sestrin-2 regulation. Mol Oncol 7(6):1012–1018

    Article  PubMed  PubMed Central  Google Scholar 

  • Buckbinder L, Talbott R, Seizinger BR, Kley N (1994) Gene regulation by temperature-sensitive p53 mutants: identification of p53 response genes. Proc Natl Acad Sci USA 91(22):10640–10644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budanov AV (2011) Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal 15(6):1679–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budanov AV, Karin M (2008) p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling. Cell 134(3):451–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budanov AV, Shoshani T, Faerman A et al (2002) Identification of a novel stress-responsive gene Hi95 involved in regulation of cell viability. Oncogene 21(39):6017–6031

    Article  CAS  PubMed  Google Scholar 

  • Budanov AV, Sablina AA, Feinstein E, Koonin EV, Chumakov PM (2004) Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304(5670):596–600

    Article  CAS  PubMed  Google Scholar 

  • Budanov AV, Lee JH, Karin M (2010) Stressin’ Sestrins take an aging fight. EMBO Mol Med 2(10):388–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chantranupong L, Wolfson RL, Orozco JM et al (2014) The Sestrins interact with GATOR2 to negatively regulate the amino-acid-sensing pathway upstream of mTORC1. Cell Rep 9(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CC, Jeon SM, Bhaskar PT et al (2010) FoxOs inhibit mTORC1 and activate Akt by inducing the expression of Sestrin3 and Rictor. Dev Cell 18(4):592–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SD, Yang JL, Lin TK, Yang DI (2019) Emerging roles of Sestrins in neurodegenerative diseases: counteracting oxidative stress and beyond. J Clin Med 8(7):1

    Article  Google Scholar 

  • Ding B, Parmigiani A, Divakaruni AS, Archer K, Murphy AN, Budanov AV (2016) Sestrin2 is induced by glucose starvation via the unfolded protein response and protects cells from non-canonical necroptotic cell death. Sci Rep 6:22538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelino S, Hansen M (2012) Autophagy—an emerging anti-aging mechanism. J Clin Exp Pathol. https://doi.org/10.4172/2161-0681.S4-006

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagenbuchner J, Kuznetsov A, Hermann M, Hausott B, Obexer P, Ausserlechner MJ (2012) FOXO3-induced reactive oxygen species are regulated by BCL2L11 (Bim) and SESN3. J Cell Sci 125(Pt 5):1191–1203

    Article  CAS  PubMed  Google Scholar 

  • Harrison DE, Strong R, Sharp ZD et al (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460(7253):392–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hillas PJ, del Alba FS, Oyarzabal J, Wilks A, Ortiz De Montellano PR (2000) The AhpC and AhpD antioxidant defense system of Mycobacterium tuberculosis. J Biol Chem 275(25):18801–18809

    Article  CAS  PubMed  Google Scholar 

  • Howell JJ, Manning BD (2011) mTOR couples cellular nutrient sensing to organismal metabolic homeostasis. Trends Endocrinol Metab 22(3):94–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu PP, Kang SA, Rameseder J et al (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332(6035):1317–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hua X, Xu J, Deng X et al (2018) New compound ChlA-F induces autophagy-dependent anti-cancer effect via upregulating Sestrin-2 in human bladder cancer. Cancer Lett 436:38–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Dibble CC, Matsuzaki M, Manning BD (2008) The TSC1-TSC2 complex is required for proper activation of mTOR complex 2. Mol Cell Biol 28(12):4104–4115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang M, Kim HG, Zhong X et al (2020) Sestrin 3 protects against diet-induced nonalcoholic steatohepatitis in mice through suppression of transforming growth factor β signal transduction. Hepatology 71(1):76–92

    Article  CAS  PubMed  Google Scholar 

  • Ichimura Y, Waguri S, Sou YS et al (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51(5):618–631

    Article  CAS  PubMed  Google Scholar 

  • Jönsson TJ, Lowther WT (2007) The peroxiredoxin repair proteins. Subcell Biochem 44:115–141

    Article  PubMed  PubMed Central  Google Scholar 

  • Kang X, Petyaykina K, Tao R, Xiong X, Dong XC, Liangpunsakul S (2014) The inhibitory effect of ethanol on Sestrin3 in the pathogenesis of ethanol-induced liver injury. Am J Physiol Gastrointest Liver Physiol 307(1):G58-65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Lee JH (2015) Identification of an AMPK phosphorylation site in Drosophila TSC2 (gigas) that regulate cell growth. Int J Mol Sci 16(4):7015–7026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, An S, Ro SH et al (2015a) Janus-faced Sestrin2 controls ROS and mTOR signalling through two separate functional domains. Nat Commun 6:10025

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Ro SH, Kim M et al (2015b) Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci Rep 5:9502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MJ, Bae SH, Ryu JC et al (2016) SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 12(8):1272–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimball SR, Ravi S, Gordon BS, Dennis MD, Jefferson LS (2015) Amino acid-induced activation of mTORC1 in rat liver is attenuated by short-term consumption of a high-fat diet. J Nutr 145(11):2496–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopnin PB, Agapova LS, Kopnin BP, Chumakov PM (2007) Repression of sestrin family genes contributes to oncogenic Ras-induced reactive oxygen species up-regulation and genetic instability. Cancer Res 67(10):4671–4678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowalsky AH, Namkoong S, Mettetal E et al (2020) The GATOR2-mTORC2 axis mediates Sestrin2-induced AKT Ser/Thr kinase activation. J Biol Chem 295:1769–80. https://doi.org/10.1074/jbc.RA119.010857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamming DW, Ye L, Katajisto P et al (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335(6076):1638–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanna A, Gomes DC, Muller-Durovic B et al (2017) A sestrin-dependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat Immunol 18(3):354–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Budanov AV, Park EJ et al (2010) Sestrin as a feedback inhibitor of TOR that prevents age-related pathologies. Science 327(5970):1223–1228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Budanov AV, Talukdar S et al (2012) Maintenance of metabolic homeostasis by Sestrin2 and Sestrin3. Cell Metab 16(3):311–321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Budanov AV, Karin M (2013) Sestrins orchestrate cellular metabolism to attenuate aging. Cell Metab 18(6):792–801

    Article  CAS  PubMed  Google Scholar 

  • Li H, Liu S, Yuan H, Niu Y, Fu L (2017) Sestrin 2 induces autophagy and attenuates insulin resistance by regulating AMPK signaling in C2C12 myotubes. Exp Cell Res 354(1):18–24

    Article  CAS  PubMed  Google Scholar 

  • Li R, Huang Y, Semple I, Kim M, Zhang Z, Lee JH (2019) Cardioprotective roles of sestrin 1 and sestrin 2 against doxorubicin cardiotoxicity. Am J Physiol Heart Circ Physiol 317(1):H39–H48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Kim HG, Dong E et al (2019) Sesn3 deficiency promotes carcinogen-induced hepatocellular carcinoma via regulation of the hedgehog pathway. Biochim Biophys Acta Mol Basis Dis 1865(10):2685–2693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Du X, Huang Z, Zheng Y, Quan N (2020) Sestrin 2 controls the cardiovascular aging process via an integrated network of signaling pathways. Ageing Res Rev 62:101096

    Article  CAS  PubMed  Google Scholar 

  • Lloyd BA, Hake HS, Ishiwata T et al (2017) Exercise increases mTOR signaling in brain regions involved in cognition and emotional behavior. Behav Brain Res 323:56–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  PubMed  PubMed Central  Google Scholar 

  • Mair W, Morantte I, Rodrigues AP et al (2011) Lifespan extension induced by AMPK and calcineurin is mediated by CRTC-1 and CREB. Nature 470(7334):404–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiuri MC, Malik SA, Morselli E et al (2009) Stimulation of autophagy by the p53 target gene Sestrin2. Cell Cycle 8(10):1571–1576

    Article  CAS  PubMed  Google Scholar 

  • Matheu A, Maraver A, Klatt P et al (2007) Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448(7151):375–379

    Article  CAS  PubMed  Google Scholar 

  • Mathur P, Pillai R (2019) Overnutrition: current scenario & combat strategies. Indian J Med Res 149:695–705. https://doi.org/10.4103/ijmr.IJMR_1703_18

    Article  PubMed  PubMed Central  Google Scholar 

  • Meek DW (2009) Tumour suppression by p53: a role for the DNA damage response. Nat Rev Cancer 9(10):714

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873

    Article  CAS  PubMed  Google Scholar 

  • Morrison A, Chen L, Wang J et al (2015) Sestrin2 promotes LKB1-mediated AMPK activation in the ischemic heart. FASEB J 29(2):408–417

    Article  CAS  PubMed  Google Scholar 

  • Nascimento EB, Osler ME, Zierath JR (2013) Sestrin 3 regulation in type 2 diabetic patients and its influence on metabolism and differentiation in skeletal muscle. Am J Physiol Endocrinol Metab 305(11):E1408–E1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira RP, Machado IF, Palmeira CM, Rolo AP (2021) The potential role of sestrin 2 in liver regeneration. Free Radic Biol Med 163:255–267

    Article  CAS  PubMed  Google Scholar 

  • Olson N, Hristova M, Heintz NH, Lounsbury KM, van der Vliet A (2011) Activation of hypoxia-inducible factor-1 protects airway epithelium against oxidant-induced barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 301(6):L993–L1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozcan U, Ozcan L, Yilmaz E et al (2008) Loss of the tuberous sclerosis complex tumor suppressors triggers the unfolded protein response to regulate insulin signaling and apoptosis. Mol Cell 29(5):541–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan KZ, Palter JE, Rogers AN et al (2007) Inhibition of mRNA translation extends lifespan in Caenorhabditis elegans. Aging Cell 6(1):111–119

    Article  CAS  PubMed  Google Scholar 

  • Papadia S, Soriano FX, Léveillé F et al (2008) Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci 11(4):476–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HW, Park H, Ro SH et al (2014) Hepatoprotective role of Sestrin2 against chronic ER stress. Nat Commun 5:4233

    Article  CAS  PubMed  Google Scholar 

  • Parmigiani A, Nourbakhsh A, Ding B et al (2014) Sestrins inhibit mTORC1 kinase activation through the GATOR complex. Cell Rep 9(4):1281–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peeters H, Debeer P, Bairoch A et al (2003) PA26 is a candidate gene for heterotaxia in humans: identification of a novel PA26-related gene family in human and mouse. Hum Genet 112(5–6):573–580

    Article  CAS  PubMed  Google Scholar 

  • Peng M, Yin N, Li MO (2014) Sestrins function as guanine nucleotide dissociation inhibitors for Rag GTPases to control mTORC1 signaling. Cell 159(1):122–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perluigi M, Di Domenico F, Butterfield DA (2015) mTOR signaling in aging and neurodegeneration: at the crossroad between metabolism dysfunction and impairment of autophagy. Neurobiol Dis 84:39–49

    Article  CAS  PubMed  Google Scholar 

  • Peterson TR, Sengupta SS, Harris TE et al (2011) mTOR complex 1 regulates lipin 1 localization to control the SREBP pathway. Cell 146(3):408–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qu J, Luo M, Zhang J et al (2021) A paradoxical role for sestrin 2 protein in tumor suppression and tumorigenesis. Cancer Cell Int 21(1):606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai N, Dey S (2020) Protective response of Sestrin under stressful conditions in aging. Ageing Res Rev 64:101186

    Article  CAS  PubMed  Google Scholar 

  • Rai N, Upadhyay AD, Goyal V, Dwivedi S, Dey AB, Dey S (2020) Sestrin2 as serum protein marker and potential therapeutic target for Parkinson’s disease. J Gerontol A Biol Sci Med Sci 75(4):690–695

    CAS  PubMed  Google Scholar 

  • Regulski MJ (2017) Cellular senescence: what, why, and how. Wounds 29(6):168–174

    PubMed  Google Scholar 

  • Rhee SG, Bae SH (2015) The antioxidant function of sestrins is mediated by promotion of autophagic degradation of Keap1 and Nrf2 activation and by inhibition of mTORC1. Free Radic Biol Med 88(Pt B):205–211

    Article  CAS  PubMed  Google Scholar 

  • Ro SH, Semple IA, Park H et al (2014) Sestrin2 promotes Unc-51-like kinase 1 mediated phosphorylation of p62/sequestosome-1. FEBS J 281(17):3816–3827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ro SH, Xue X, Ramakrishnan SK et al (2016) Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis. Elife 5:e12204

    Article  PubMed  PubMed Central  Google Scholar 

  • Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11(12):1306–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Álvarez M, Strippoli R, Donadelli M, Bazhin AV, Cordani M (2019) Sestrins as a therapeutic bridge between ROS and autophagy in cancer. Cancers (Basel) 11(10):1415

    Article  PubMed  Google Scholar 

  • Sanli T, Linher-Melville K, Tsakiridis T, Singh G (2012) Sestrin2 modulates AMPK subunit expression and its response to ionizing radiation in breast cancer cells. PLoS ONE 7(2):e32035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saveljeva S, Cleary P, Mnich K et al (2016) Endoplasmic reticulum stress-mediated induction of SESTRIN 2 potentiates cell survival. Oncotarget 7(11):12254–12266

    Article  PubMed  PubMed Central  Google Scholar 

  • Saxton RA, Knockenhauer KE, Wolfson RL et al (2016) Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science 351(6268):53–58

    Article  CAS  PubMed  Google Scholar 

  • Segalés J, Perdiguero E, Serrano AL et al (2020) Sestrin prevents atrophy of disused and aging muscles by integrating anabolic and catabolic signals. Nat Commun 11(1):189

    Article  PubMed  PubMed Central  Google Scholar 

  • Seo K, Seo S, Ki SH, Shin SM (2016) Sestrin2 inhibits hypoxia-inducible factor-1α accumulation via AMPK-mediated prolyl hydroxylase regulation. Free Radic Biol Med 101:511–523

    Article  CAS  PubMed  Google Scholar 

  • Shaw P, Chattopadhyay A (2020) Nrf2-ARE signaling in cellular protection: mechanism of action and the regulatory mechanisms. J Cell Physiol 235(4):3119–3130

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Doycheva DM, Xu L, Tang J, Yan M, Zhang JH (2016) Sestrin2 induced by hypoxia inducible factor1 alpha protects the blood-brain barrier via inhibiting VEGF after severe hypoxic-ischemic injury in neonatal rats. Neurobiol Dis 95:111–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin BY, Jin SH, Cho IJ, Ki SH (2012) Nrf2-ARE pathway regulates induction of Sestrin-2 expression. Free Radic Biol Med 53(4):834–841

    Article  CAS  PubMed  Google Scholar 

  • Shirooie S, Nabavi SF, Dehpour AR et al (2018) Targeting mTORs by omega-3 fatty acids: a possible novel therapeutic strategy for neurodegeneration. Pharmacol Res 135:37–48

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Chowdhuri DK (2018) Modulation of sestrin confers protection to Cr(VI) induced neuronal cell death in Drosophila melanogaster. Chemosphere 191:302–14. https://doi.org/10.1016/j.chemosphere.2017.10.037

    Article  CAS  PubMed  Google Scholar 

  • Sujkowski A, Richardson K, Prifti MV et al (2022) Endurance exercise ameliorates phenotypes in Drosophila models of spinocerebellar ataxias. Elife. https://doi.org/10.7554/eLife.75389

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun W, Wang B, Qu XL et al (2019) Metabolism of reactive oxygen species in osteosarcoma and potential treatment applications. Cells 9(1):87

    Article  PubMed  PubMed Central  Google Scholar 

  • Sung MM, Zordoky BN, Bujak AL et al (2015) AMPK deficiency in cardiac muscle results in dilated cardiomyopathy in the absence of changes in energy metabolism. Cardiovasc Res 107(2):235–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T, Motohashi H, Yamamoto M (2013) Toward clinical application of the Keap1-Nrf2 pathway. Trends Pharmacol Sci 34(6):340–346

    Article  CAS  PubMed  Google Scholar 

  • Tao R, Xiong X, Liangpunsakul S, Dong XC (2015) Sestrin 3 protein enhances hepatic insulin sensitivity by direct activation of the mTORC2-Akt signaling. Diabetes 64(4):1211–1223

    Article  CAS  PubMed  Google Scholar 

  • Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3(6):393–402

    Article  CAS  PubMed  Google Scholar 

  • Velasco-Miguel S, Buckbinder L, Jean P et al (1999) PA26, a novel target of the p53 tumor suppressor and member of the GADD family of DNA damage and growth arrest inducible genes. Oncogene 18(1):127–137

    Article  CAS  PubMed  Google Scholar 

  • Wang LX, Zhu XM, Yao YM (2019a) Sestrin 2: its potential role and regulatory mechanism in host immune response in diseases. Front Immunol 10:2797

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P, Wang L, Lu J et al (2019b) SESN2 protects against doxorubicin-induced cardiomyopathy via rescuing mitophagy and improving mitochondrial function. J Mol Cell Cardiol 133:125–137

    Article  CAS  PubMed  Google Scholar 

  • Wei JL, Fu ZX, Fang M et al (2015) Decreased expression of sestrin 2 predicts unfavorable outcome in colorectal cancer. Oncol Rep 33(3):1349–1357

    Article  CAS  PubMed  Google Scholar 

  • Wei JL, Fang M, Fu ZX et al (2017) Sestrin 2 suppresses cells proliferation through AMPK/mTORC1 pathway activation in colorectal cancer. Oncotarget 8(30):49318–49328

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfson RL, Chantranupong L, Saxton RA et al (2016) Sestrin2 is a leucine sensor for the mTORC1 pathway. Science 351(6268):43–48

    Article  CAS  PubMed  Google Scholar 

  • Xiao-Pei T, Yan-Xia M, Dan-Ni Q, Ling Z, Miao Y, Xin-Rong F (2017) Rosemary extracts upregulate Nrf2, Sestrin2, and MRP2 protein level in human hepatoma HepG2 cells. Evidence-based Complement Altern Med 2017:1–7

    Google Scholar 

  • Yan M, Vemu B, Veenstra J, Petiwala SM, Johnson JJ (2018) Carnosol, a dietary diterpene from rosemary (Rosmarinus officinalis) activates Nrf2 leading to Sestrin 2 induction in colon cells. Integr Mol Med. https://doi.org/10.15761/IMM.1000335

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang L, Li P, Fu S, Calay ES, Hotamisligil GS (2010) Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 11(6):467–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YL, Loh KS, Liou BY et al (2013) SESN-1 is a positive regulator of lifespan in Caenorhabditis elegans. Exp Gerontol 48(3):371–379

    Article  CAS  PubMed  Google Scholar 

  • Yang JH, Kim KM, Cho SS et al (2019) Inhibitory effect of Sestrin 2 on hepatic stellate cell activation and liver fibrosis. Antioxid Redox Signal 31(3):243–259

    Article  CAS  PubMed  Google Scholar 

  • Yen JH, Huang ST, Huang HS et al (2018) HGK-sestrin 2 signaling-mediated autophagy contributes to antitumor efficacy of Tanshinone IIA in human osteosarcoma cells. Cell Death Dis 9(10):1003

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu Y, Yoon SO, Poulogiannis G et al (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332(6035):1322–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J (2015) Teaching the basics of autophagy and mitophagy to redox biologists–mechanisms and experimental approaches. Redox Biol 4:242–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LL, Zhang ZJ (2018) Sestrin2 aggravates oxidative stress of neurons by decreasing the expression of Nrf2. Eur Rev Med Pharmacol Sci 22(11):3493–3501

    PubMed  Google Scholar 

  • Zhang XY, Wu XQ, Deng R, Sun T, Feng GK, Zhu XF (2013) Upregulation of sestrin 2 expression via JNK pathway activation contributes to autophagy induction in cancer cells. Cell Signal 25(1):150–158

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Shah P, Budanov AV et al (2014) Sestrin2 protein positively regulates AKT enzyme signaling and survival in human squamous cell carcinoma and melanoma cells. J Biol Chem 289(52):35806–35814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuo X, Wu Y, Yang Y, Gao L, Qiao X, Chen T (2019) Knockdown of LSD1 meliorates Ox-LDL-stimulated NLRP3 activation and inflammation by promoting autophagy via SESN2-mesiated PI3K/Akt/mTOR signaling pathway. Life Sci 233:116696

    Article  CAS  PubMed  Google Scholar 

  • Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the following funding sources: National Natural Science Foundation of China (82100632, 82170325), Sichuan Province science and technology projects (2021YFH0148) and Science and Technology Strategic Cooperation Programs of Luzhou Municipal People’s Government and Southwest Medical University (2021LZXNYD-J09, 2019LZXNYDJ30). Cartoon images used in Graphical abstract were obtained from Scidraw.io.

Author information

Authors and Affiliations

Authors

Contributions

XZ provided direction and guidance throughout the preparation of the manuscript. HF performed the literature search and wrote the original manuscript. YW provided constructive suggestions and made significant revisions to the manuscript. XS helped revise the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Juyi Wan or Xiaolin Zhong.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, H., Shi, X., Wan, J. et al. Role of sestrins in metabolic and aging-related diseases. Biogerontology 25, 9–22 (2024). https://doi.org/10.1007/s10522-023-10053-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-023-10053-y

Keywords

Navigation