Skip to main content

Advertisement

Log in

Age-dependent and modality-specific changes in the phenotypic markers Nav1.8, ASIC3, P2X3 and TRPM8 in male rat primary sensory neurons during healthy aging

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

The effects during healthy aging of the tetrodotoxin-resistant voltage-gated sodium channel 1.8 (Nav1.8), the acid-sensing ion channel-3 (ASIC3), the purinergic-receptor 2X3 (P2X3) and transient receptor potential of melastatin-8 (TRPM8) on responses to non-noxious stimuli are poorly understood. These effects will influence the transferability to geriatric subjects of findings obtained using young animals. To evaluate the involvement of these functional markers in mechanical and cold sensitivity to non-noxious stimuli and their underlying mechanisms, we used a combination of immunohistochemistry and quantitation of immunostaining in sub-populations of neurons of the dorsal root ganglia (DRG), behavioral tests, pharmacological interventions and Western-blot in healthy male Wistar rats from 3 to 24 months of age. We found significantly decreased sensitivity to mechanical and cold stimuli in geriatric rats. These behavioural alterations occurred simultaneously with differing changes in the expression of Nav1.8, ASIC3, P2X3 and TRPM8 in the DRG at different ages. Using pharmacological blockade in vivo we demonstrated the involvement of ASIC3 and P2X3 in normal mechanosensation and of Nav1.8 and ASIC3 in cold sensitivity. Geriatric rats also exhibited reductions in the number of A-like large neurons and in the proportion of peptidergic to non-peptidergic neurons. The changes in normal sensory physiology in geriatric rats we report here strongly support the inclusion of aged rodents as an important group in the design of pre-clinical studies evaluating pain treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  • Abraira VE, Ginty DD (2013) The sensory neurons of touch. Neuron 79:618–639

    Article  CAS  Google Scholar 

  • Acosta C, Djouhri L, Watkins R, Berry C, Bromage K, Lawson SN (2014) TREK2 expressed selectively in IB4-binding C-fiber nociceptors hyperpolarizes their membrane potentials and limits spontaneous pain. J Neurosci 34:1494–1509

    Article  CAS  Google Scholar 

  • Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN (1999) The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nat Neurosci 2:541–548

    Article  CAS  Google Scholar 

  • Alvarez-Berdugo D, Rofes L, Casamitjana JF, Enrique A, Chamizo J, Vina C, Pollan CM, Clave P (2018) TRPM8, ASIC1, and ASIC3 localization and expression in the human oropharynx. Neurogastroenterol Motil 30:e13398

    Article  CAS  Google Scholar 

  • Amir R, Argoff CE, Bennett GJ, Cummins TR, Durieux ME, Gerner P, Gold MS, Porreca F, Strichartz GR (2006) The role of sodium channels in chronic inflammatory and neuropathic pain. J Pain 7:S1-29

    Article  CAS  Google Scholar 

  • Balzani E, Fanelli A, Malafoglia V, Tenti M, Ilari S, Corraro A, Muscoli C, Raffaeli W (2021) A review of the clinical and therapeutic implications of neuropathic pain. Biomedicines. https://doi.org/10.3390/biomedicines9091239

    Article  Google Scholar 

  • Bass JJ, Wilkinson DJ, Rankin D, Phillips BE, Szewczyk NJ, Smith K, Atherton PJ (2017) An overview of technical considerations for Western blotting applications to physiological research. Scand J Med Sci Sports 27:4–25

    Article  CAS  Google Scholar 

  • Benitez S, Seltzer A, Acosta C (2017) Nociceptor-like rat dorsal root ganglion neurons express the angiotensin-II AT2 receptor throughout development. Int J Dev Neurosci 56:10–17

    Article  CAS  Google Scholar 

  • Benitez SG, Seltzer AM, Messina DN, Foscolo MR, Patterson SI, Acosta CG (2020) Cutaneous inflammation differentially regulates the expression and function of Angiotensin-II types 1 and 2 receptors in rat primary sensory neurons. J Neurochem 152:675–696

    Article  CAS  Google Scholar 

  • Benton RL, Maddie MA, Minnillo DR, Hagg T, Whittemore SR (2008) Griffonia simplicifolia isolectin B4 identifies a specific subpopulation of angiogenic blood vessels following contusive spinal cord injury in the adult mouse. J Comp Neurol 507:1031–1052

    Article  Google Scholar 

  • Bergman E, Ulfhake B (1998) Loss of primary sensory neurons in the very old rat: neuron number estimates using the disector method and confocal optical sectioning. J Comp Neurol 396:211–222

    Article  CAS  Google Scholar 

  • Bouche P, Cattelin F, Saint-Jean O, Leger JM, Queslati S, Guez D, Moulonguet A, Brault Y, Aquino JP, Simunek P (1993) Clinical and electrophysiological study of the peripheral nervous system in the elderly. J Neurol 240:263–268

    Article  CAS  Google Scholar 

  • Burnstock G, Dale N (2015) Purinergic signalling during development and ageing. Purinergic Signal 11:277–305

    Article  CAS  Google Scholar 

  • Cecchini T, Cuppini R, Ciaroni S, Barili P, De Matteis R, Del Grande P (1995) Changes in the number of primary sensory neurons in normal and vitamin-E-deficient rats during aging. Somatosens Mot Res 12:317–327

    Article  CAS  Google Scholar 

  • Chagot B, Escoubas P, Diochot S, Bernard C, Lazdunski M, Darbon H (2005) Solution structure of APETx2, a specific peptide inhibitor of ASIC3 proton-gated channels. Protein Sci 14:2003–2010

    Article  CAS  Google Scholar 

  • Chakrabarty A, McCarson KE, Smith PG (2011) Hypersensitivity and hyperinnervation of the rat hind paw following carrageenan-induced inflammation. Neurosci Lett 495:67–71

    Article  CAS  Google Scholar 

  • Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  CAS  Google Scholar 

  • Cheah M, Fawcett JW, Andrews MR (2017) Assessment of thermal pain sensation in rats and mice using the hargreaves test. Bio Protoc. https://doi.org/10.21769/BioProtoc.2506

    Article  Google Scholar 

  • Choi Y, Wook YY, Sik NH, Ho KS, Mo CJ (1994) Behavioral signs of ongoing pain and cold allodynia in a rat model of neuropathic pain. Pain 59:369–376

    Article  Google Scholar 

  • Colburn RW, Lubin ML, Stone DJ Jr, Wang Y, Lawrence D, D’Andrea MR, Brandt MR, Liu Y, Flores CM, Qin N (2007) Attenuated cold sensitivity in TRPM8 null mice. Neuron 54:379–386

    Article  CAS  Google Scholar 

  • Devor M (1991) Chronic pain in the aged: possible relation between neurogenesis, involution and pathophysiology in adult sensory ganglia. J Basic Clin Physiol Pharmacol 2:1–15

    Article  CAS  Google Scholar 

  • Diochot S, Baron A, Rash LD, Deval E, Escoubas P, Scarzello S, Salinas M, Lazdunski M (2004) A new sea anemone peptide, APETx2, inhibits ASIC3, a major acid-sensitive channel in sensory neurons. EMBO J 23:1516–1525

    Article  CAS  Google Scholar 

  • Djouhri L, Fang X, Okuse K, Wood JN, Berry CM, Lawson SN (2003) The TTX-resistant sodium channel Nav1.8 (SNS/PN3): expression and correlation with membrane properties in rat nociceptive primary afferent neurons. J Physiol 550:739–752

    Article  CAS  Google Scholar 

  • Djuanda D, He B, Liu X, Xu S, Zhang Y, Xu Y, Zhu Z (2021) Comprehensive analysis of age-related changes in lipid metabolism and myelin sheath formation in sciatic nerves. J Mol Neurosci 71:2310–2323

    Article  CAS  Google Scholar 

  • Dulai JS, Smith ESJ, Rahman T (2021) Acid-sensing ion channel 3: an analgesic target. Channels (austin) 15:94–127

    Article  Google Scholar 

  • Fang X, Djouhri L, McMullan S, Berry C, Okuse K, Waxman SG, Lawson SN (2005) trkA is expressed in nociceptive neurons and influences electrophysiological properties via Nav1.8 expression in rapidly conducting nociceptors. J Neurosci 25:4868–4878

    Article  CAS  Google Scholar 

  • Fang X, Djouhri L, McMullan S, Berry C, Waxman SG, Okuse K, Lawson SN (2006) Intense isolectin-B4 binding in rat dorsal root ganglion neurons distinguishes C-fiber nociceptors with broad action potentials and high Nav1.9 expression. J Neurosci 26:7281–7292

    Article  CAS  Google Scholar 

  • Garcia-Avila M, Islas LD (2019) What is new about mild temperature sensing? A review of recent findings. Temperature (austin) 6:132–141

    Article  Google Scholar 

  • Garcia-Piqueras J, Garcia-Mesa Y, Carcaba L, Feito J, Torres-Parejo I, Martin-Biedma B, Cobo J, Garcia-Suarez O, Vega JA (2019) Ageing of the somatosensory system at the periphery: age-related changes in cutaneous mechanoreceptors. J Anat 234:839–852

    Article  CAS  Google Scholar 

  • Geurts JW, Willems PC, Lockwood C, van Kleef M, Kleijnen J, Dirksen C (2017) Patient expectations for management of chronic non-cancer pain: a systematic review. Health Expect 20:1201–1217

    Article  Google Scholar 

  • Giovannini S, Coraci D, Brau F, Galluzzo V, Loreti C, Caliandro P, Padua L, Maccauro G, Biscotti L, Bernabei R (2021) Neuropathic pain in the elderly. Diagnostics (basel). https://doi.org/10.3390/diagnostics11040613

    Article  Google Scholar 

  • Handler A, Ginty DD (2021) The mechanosensory neurons of touch and their mechanisms of activation. Nat Rev Neurosci 22:521–537

    Article  CAS  Google Scholar 

  • Ho Kim S, Mo Chung J (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    Article  Google Scholar 

  • Hou J, Riise J, Pakkenberg B (2012) Application of immunohistochemistry in stereology for quantitative assessment of neural cell populations illustrated in the Gottingen minipig. PLoS ONE 7:e43556

    Article  CAS  Google Scholar 

  • Iftinca M, Altier C (2020) The cool things to know about TRPM8! Channels (austin) 14:413–420

    Article  Google Scholar 

  • Ikeuchi M, Kolker SJ, Burnes LA, Walder RY, Sluka KA (2008) Role of ASIC3 in the primary and secondary hyperalgesia produced by joint inflammation in mice. Pain 137:662–669

    Article  CAS  Google Scholar 

  • Jahangir A, Alam M, Carter DS, Dillon MP, Bois DJ, Ford AP, Gever JR, Lin C, Wagner PJ, Zhai Y, Zira J (2009) Identification and SAR of novel diaminopyrimidines. Part 2: the discovery of RO-51, a potent and selective, dual P2X(3)/P2X(2/3) antagonist for the treatment of pain. Bioorg Med Chem Lett 19:1632–1635

    Article  CAS  Google Scholar 

  • Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF, Kort M, Carroll W, Marron B, Atkinson R, Thomas J, Liu D, Krambis M, Liu Y, McGaraughty S, Chu K, Roeloffs R, Zhong C, Mikusa JP, Hernandez G, Gauvin D, Wade C, Zhu C, Pai M, Scanio M, Shi L, Drizin I, Gregg R, Matulenko M, Hakeem A, Gross M, Johnson M, Marsh K, Wagoner PK, Sullivan JP, Faltynek CR, Krafte DS (2007) A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat. Proc Natl Acad Sci USA 104:8520–8525

    Article  CAS  Google Scholar 

  • Kage K, Niforatos W, Zhu CZ, Lynch KJ, Honore P, Jarvis MF (2002) Alteration of dorsal root ganglion P2X3 receptor expression and function following spinal nerve ligation in the rat. Exp Brain Res 147:511–519

    Article  CAS  Google Scholar 

  • Kaliappan S, Simone DA, Banik RK (2018) Nonlinear inverted-U shaped relationship between aging and epidermal innervation in the rat plantar hind paw: a laser scanning confocal microscopy study. J Pain 19:1015–1023

    Article  Google Scholar 

  • Karczewski J, Spencer RH, Garsky VM, Liang A, Leitl MD, Cato MJ, Cook SP, Kane S, Urban MO (2010) Reversal of acid-induced and inflammatory pain by the selective ASIC3 inhibitor, APETx2. Br J Pharmacol 161:950–960

    Article  CAS  Google Scholar 

  • Kobayashi K, Fukuoka T, Obata K, Yamanaka H, Dai Y, Tokunaga A, Noguchi K (2005) Distinct expression of TRPM8, TRPA1, and TRPV1 mRNAs in rat primary afferent neurons with adelta/c-fibers and colocalization with trk receptors. J Comp Neurol 493:596–606

    Article  CAS  Google Scholar 

  • Kraemer HC, Kupfer DJ (2006) Size of treatment effects and their importance to clinical research and practice. Biol Psychiatry 59:990–996

    Article  Google Scholar 

  • Krutsay M (1970) Nissl staining with cresyl violet. Z Med Labortech 11:75–76

    CAS  Google Scholar 

  • Lawson SN (2002) Phenotype and function of somatic primary afferent nociceptive neurones with C-, Adelta- or Aalpha/beta-fibres. Exp Physiol 87:239–244

    Article  Google Scholar 

  • Lawson SN, McCarthy PW, Prabhakar E (1996) Electrophysiological properties of neurones with CGRP-like immunoreactivity in rat dorsal root ganglia. J Comp Neurol 365:355–366

    Article  CAS  Google Scholar 

  • Lawson SN, Crepps B, Perl ER (2002) Calcitonin gene-related peptide immunoreactivity and afferent receptive properties of dorsal root ganglion neurones in guinea-pigs. J Physiol 540:989–1002

    Article  CAS  Google Scholar 

  • Lawson SN, Fang X, Djouhri L (2019) Nociceptor subtypes and their incidence in rat lumbar dorsal root ganglia (DRGs): focussing on C-polymodal nociceptors, Abeta-nociceptors, moderate pressure receptors and their receptive field depths. Curr Opin Physiol 11:125–146

    Article  Google Scholar 

  • Leo S, D’Hooge R, Meert T (2010) Exploring the role of nociceptor-specific sodium channels in pain transmission using Nav1.8 and Nav1.9 knockout mice. Behav Brain Res 208:149–157

    Article  CAS  Google Scholar 

  • Li L, Rutlin M, Abraira VE, Cassidy C, Kus L, Gong S, Jankowski MP, Luo W, Heintz N, Koerber HR, Woodbury CJ, Ginty DD (2011) The functional organization of cutaneous low-threshold mechanosensory neurons. Cell 147:1615–1627

    Article  CAS  Google Scholar 

  • Lopes DM, Malek N, Edye M, Jager SB, McMurray S, McMahon SB, Denk F (2017) Sex differences in peripheral not central immune responses to pain-inducing injury. Sci Rep 7:16460

    Article  Google Scholar 

  • Luiz AP, MacDonald DI, Santana-Varela S, Millet Q, Sikandar S, Wood JN, Emery EC (2019) Cold sensing by NaV1.8-positive and NaV1.8-negative sensory neurons. Proc Natl Acad Sci U S A 116:3811–3816

    Article  CAS  Google Scholar 

  • McGaraughty S, Chu KL, Scanio MJ, Kort ME, Faltynek CR, Jarvis MF (2008) A selective Nav1.8 sodium channel blocker, A-803467 [5-(4-chlorophenyl-N-(3,5-dimethoxyphenyl)furan-2-carboxamide], attenuates spinal neuronal activity in neuropathic rats. J Pharmacol Exp Ther 324:1204–1211

    Article  CAS  Google Scholar 

  • McIntyre S, Nagi SS, McGlone F, Olausson H (2021) The Effects of ageing on tactile function in humans. Neuroscience 464:53–58

    Article  CAS  Google Scholar 

  • Messina DN, Peralta ED, Acosta CG (2022) Glial-derived neurotrophic factor regulates the expression of TREK2 in rat primary sensory neurons leading to attenuation of axotomy-induced neuropathic pain. Exp Neurol 357:114190

    Article  CAS  Google Scholar 

  • Millecamps M, Shi XQ, Piltonen M, Echeverry S, Diatchenko L, Zhang J, Stone LS (2020) The geriatric pain experience in mice: intact cutaneous thresholds but altered responses to tonic and chronic pain. Neurobiol Aging 89:1–11

    Article  Google Scholar 

  • Mogil JS, Breese NM, Witty MF, Ritchie J, Rainville ML, Ase A, Abbadi N, Stucky CL, Seguela P (2005) Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. J Neurosci 25:9893–9901

    Article  CAS  Google Scholar 

  • Molliver DC, Immke DC, Fierro L, Pare M, Rice FL, McCleskey EW (2005) ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons. Mol Pain 1:35

    Article  Google Scholar 

  • Morgan D, Mitzelfelt JD, Koerper LM, Carter CS (2012) Effects of morphine on thermal sensitivity in adult and aged rats. J Gerontol A Biol Sci Med Sci 67:705–713

    Article  Google Scholar 

  • Palve SS, Palve SB (2018) Impact of aging on nerve conduction velocities and late responses in healthy individuals. J Neurosci Rural Pract 9:112–116

    Article  Google Scholar 

  • Pickering G, Jourdan D, Millecamps M, Chapuy E, Alliot J, Eschalier A (2006) Age-related impact of neuropathic pain on animal behaviour. Eur J Pain 10:749–755

    Article  Google Scholar 

  • Price MP, McIlwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071–1083

    Article  CAS  Google Scholar 

  • Ramachandra R, McGrew SY, Baxter JC, Howard JR, Elmslie KS (2013) NaV1.8 channels are expressed in large, as well as small, diameter sensory afferent neurons. Channels (austin) 7:34–37

    Article  CAS  Google Scholar 

  • Ranade SS, Woo SH, Dubin AE, Moshourab RA, Wetzel C, Petrus M, Mathur J, Begay V, Coste B, Mainquist J, Wilson AJ, Francisco AG, Reddy K, Qiu Z, Wood JN, Lewin GR, Patapoutian A (2014) Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516:121–125

    Article  CAS  Google Scholar 

  • Ruan N, Tribble J, Peterson AM, Jiang Q, Wang JQ, Chu XP (2021) Acid-Sensing Ion Channels and Mechanosensation. Int J Mol Sci. https://doi.org/10.3390/ijms22094810

    Article  Google Scholar 

  • Senaris R, Ordas P, Reimundez A, Viana F (2018) Mammalian cold TRP channels: impact on thermoregulation and energy homeostasis. Pflugers Arch 470:761–777

    Article  CAS  Google Scholar 

  • Shen J, Fox LE, Cheng J (2012) Differential effects of peripheral versus central coadministration of QX-314 and capsaicin on neuropathic pain in rats. Anesthesiology 117:365–380

    Article  CAS  Google Scholar 

  • Shields SD, Ahn HS, Yang Y, Han C, Seal RP, Wood JN, Waxman SG, Dib-Hajj SD (2012) Nav1.8 expression is not restricted to nociceptors in mouse peripheral nervous system. Pain 153:2017–2030

    Article  CAS  Google Scholar 

  • Staaf S, Oerther S, Lucas G, Mattsson JP, Ernfors P (2009) Differential regulation of TRP channels in a rat model of neuropathic pain. Pain 144:187–199

    Article  CAS  Google Scholar 

  • Stefanini M, De Martino C, Zamboni L (1967) Fixation of ejaculated spermatozoa for electron microscopy. Nature 216:173–174

    Article  CAS  Google Scholar 

  • Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B (2020) Mammalian transient receptor potential TRPA1 channels: from structure to disease. Physiol Rev 100:725–803

    Article  CAS  Google Scholar 

  • Tarpley JW, Kohler MG, Martin WJ (2004) The behavioral and neuroanatomical effects of IB4-saporin treatment in rat models of nociceptive and neuropathic pain. Brain Res 1029:65–76

    Article  CAS  Google Scholar 

  • Terman A, Brunk UT (1998) Lipofuscin: mechanisms of formation and increase with age. APMIS 106:265–276

    Article  CAS  Google Scholar 

  • Thapa D, Barrett B, Argunhan F, Brain SD (2021) Influence of cold-TRP receptors on cold-influenced behaviour. Pharmaceuticals (basel). https://doi.org/10.3390/ph15010042

    Article  Google Scholar 

  • Voilley N, de Weille J, Mamet J, Lazdunski M (2001) Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci 21:8026–8033

    Article  CAS  Google Scholar 

  • Wodarski R, Bagdas D, Paris JJ, Pheby T, Toma W, Xu R, Damaj MI, Knapp PE, Rice ASC, Hauser KF (2018) Reduced intraepidermal nerve fibre density, glial activation, and sensory changes in HIV type-1 Tat-expressing female mice: involvement of Tat during early stages of HIV-associated painful sensory neuropathy. Pain Rep 3:e654

    Article  Google Scholar 

  • Xing H, Chen M, Ling J, Tan W, Gu JG (2007) TRPM8 mechanism of cold allodynia after chronic nerve injury. J Neurosci 27:13680–13690

    Article  CAS  Google Scholar 

  • Yezierski RP (2012) The effects of age on pain sensitivity: preclinical studies. Pain Med 13(Suppl 2):S27-36

    Article  Google Scholar 

  • Yezierski RP, Hansson P (2018) Inflammatory and neuropathic pain from bench to bedside: what went wrong? J Pain 19:571–588

    Article  Google Scholar 

  • Yezierski RP, King CD, Morgan D, Carter CS, Vierck CJ (2010) Effects of age on thermal sensitivity in the rat. J Gerontol A Biol Sci Med Sci 65:353–362

    Article  CAS  Google Scholar 

  • Zappia KJ, Garrison SR, Hillery CA, Stucky CL (2014) Cold hypersensitivity increases with age in mice with sickle cell disease. Pain 155:2476–2485

    Article  Google Scholar 

  • Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi J, Nau C, Wood JN, Reeh PW (2007) Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures. Nature 447:855–858

    Article  CAS  Google Scholar 

  • Zuliani V, Rivara M, Fantini M, Costantino G (2010) Sodium channel blockers for neuropathic pain. Expert Opin Ther Pat 20:755–779

    Article  CAS  Google Scholar 

  • Zybura A, Hudmon A, Cummins TR (2021) Distinctive properties and powerful neuromodulation of nav1.6 sodium channels regulates neuronal excitability. Cells 10(7):1596–1599

    Article  Google Scholar 

  • Zylka MJ, Rice FL, Anderson DJ (2005) Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45:17–25

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Mabel R. Foscolo for technical support and assistance and Dr. Sally N. Lawson, Dr. Patricia Kunda and Dr. Sergio Benitez for helpful comments on the manuscript.

Funding

DNM. and EDP: were supported by doctoral fellowships from the National Research Council of Argentina (CONICET). AMS., SIP. and CGA: are Staff Scientists. This work was funded by Fondo Nacional para la Ciencia y la Tecnología (FONCyT-ANPCyT PICT-2019–02666 to CGA.), Proyecto de Financiamiento de Unidades Ejecutoras (PUE-2017–0025 to CGA., AMS. and SIP.) and by the Proyectos de Investigación Plurianual 2021–2023 (PIP-2230 to CGA) both from CONICET. The sponsors of this research were not involved in experimental design, writing of the manuscript or the decision to submit it.

Author information

Authors and Affiliations

Authors

Contributions

DNM: Investigation, Methodology, Formal analysis, Writing—Original draft preparation. EDP: Investigation. AMS: Conceptualization, resources. SIP: Conceptualization, resources, Writing—Review & Editing. CGA: Supervision, Funding acquisition, Writing—Original draft preparation, Conceptualization.

Corresponding author

Correspondence to Cristian G. Acosta.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Ethical approval

This work was carried out following ARRIVE guidelines for reporting research wherever applicable. The authors also obtained the approval of our institutional Ethics Committee for work with research animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 3392 kb)

Schematic representation of the experimental design. A The diagram shows the ages at which each experiment (IHC, behavior assessment and WB) was conducted and the sample size involved (N). B The arrows illustrate the time course for in vivo pharmacological experiments in young (3 months) vs. geriatric (24 months) male Wistar rats. The hours refer to the timing for the last behavioral assessment (3 h prior to i.m. injection of each drug tested), time of injection (0 h) and the three times after where behavior was measured. The drugs administered are listed, albeit each rat received a single dose of a single drug or vehicle. C Illustration of the HCImage generated mask used to measure neuronal area and pixel densities. The arrow indicates a strongly-stained neuron (subjective score of 5) and the asterisks indicate weakly-stained neurons (subjective scores of 0-1). The XY plot shows that objective measurements of pixel intensity and subjective scores fit a linear regression. Values for positive and negative staining are indicated.

Supplementary file2 (2 1081 kb)

Scatter bar-dot plot showing the mean ± SEM cytoplasmic % of maximum intensity for trkA staining at all ages examined. Date tested with Kuskal-Wallis test.

Supplementary file3 (3 4855 kb)

Age-induced changes in DRG neuronal sizes. A Representative images of cresyl-violet stained full sections of L5 DRGs from male rats of 3 and 24 months. B Bar plots showing the average size of small, medium and large neurons at each age examined. Data tested with Kruskal-Wallis test. C Bar plot shows the overall proportions of small, medium and size neurons in L5 DRGs from 3 and 24-month old male rats. Data tested with Chi-square test. D Histograms of size distribution of DRG neurons at all ages examined.

Supplementary file4 (DOCX 13 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Messina, D.N., Peralta, E.D., Seltzer, A.M. et al. Age-dependent and modality-specific changes in the phenotypic markers Nav1.8, ASIC3, P2X3 and TRPM8 in male rat primary sensory neurons during healthy aging. Biogerontology 24, 111–136 (2023). https://doi.org/10.1007/s10522-022-10000-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-022-10000-3

Keywords

Navigation