Skip to main content
Log in

The senescence-accelerated mouse (SAM-P8) as a model for the study of vascular functional alterations during aging

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

We studied vascular function in quiescent aortas from senescence-accelerated resistant (SAM-R1) and prone (SAM-P8) mice. Myographical studies of thoracic aorta segments from 6–7 month-old mice showed that the contractility of SAM-P8 aortas was markedly higher than that of SAM-R1 after KCl depolarization or phenylephrine addition. Acetylcholine dose-response relaxation curves revealed that SAM-R1 vessels were slightly more sensitive than those of SAM-P8. In the presence of the NO synthase inhibitor, L-NAME, all vessels displayed contractions to acetylcholine, but these were more distinct in the SAM-R1. Phenylephrine plus L-NAME displayed stronger contractions in both animal strains, but were markedly more pronounced in SAM-R1. The cyclooxygenase inhibitor, indomethacin did not change the vessel responses to acetylcholine or phenylephrine. These data indicate that NO synthase, not cyclooxygenase, was responsible for the differences in contractility. Standard histology and immunohistochemistry of endothelial NO synthase revealed no differences in the expression of this protein. In contrast, increased levels of malondialdehyde were found in SAM-P8 vessels. We conclude that SAM-P8 vessels exhibit higher contractility than those of SAM-R1. Furthermore, our results suggest that the endothelium of SAM-P8 vessels is dysfunctional and lacks normal capability to counteract smooth muscle contraction. Therefore, our findings support SAM-P8 as a suitable model for the study of vascular physiological changes during aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez-Garcia O, Vega-Naredo I, Sierra V, Caballero B, Tomas-Zapico C, Camins A, Garcia JJ, Pallas M, Coto-Montes A (2006) Elevated oxidative stress in the brain of senescence-accelerated mice at 5 months of age. Biogerontology 7:43–52

    Article  PubMed  CAS  Google Scholar 

  • Behrendt D, Ganz P (2002) Endothelial function. From vascular biology to clinical applications. Am J Cardiol 90:40L–48L

    Article  PubMed  CAS  Google Scholar 

  • Blackwell KA, Sorenson JP, Richardson DM, Smith LA, Suda O, Nath K, Katusic ZS (2004) Mechanisms of aging-induced impairment of endothelium-dependent relaxation: role of tetrahydrobiopterin. Am J Physiol Heart Circ Physiol 287:H2448–H2453

    Article  PubMed  CAS  Google Scholar 

  • Caballero AE, Arora S, Saouaf R, Lim SC, Smakowski P, Park JY, King GL, LoGerfo FW, Horton ES, Veves A (1999) Microvascular and macrovascular reactivity is reduced in subjects at risk for type 2 diabetes. Diabetes 48:1856–1862

    Article  PubMed  CAS  Google Scholar 

  • Carp RI, Meeker HC, Chung R, Kozak CA, Hosokawa M, Fujisawa H (2002) Murine leukemia virus in organs of senescence-prone and -resistant mouse strains. Mech Ageing Dev 123:575–584

    Article  PubMed  CAS  Google Scholar 

  • Egashira K, Inou T, Hirooka Y, Kai H, Sugimachi M, Suzuki S, Kuga T, Urabe Y, Takeshita A (1993) Effects of age on endothelium-dependent vasodilation of resistance coronary artery by acetylcholine in humans. Circulation 88:77–81

    PubMed  CAS  Google Scholar 

  • Estevez AG, Jordan J (2002) Nitric oxide and superoxide, a deadly cocktail. Ann NY Acad Sci 962:207–211

    Article  PubMed  CAS  Google Scholar 

  • Fenton M, Huang HL, Hong Y, Hawe E, Kurz DJ, Erusalimsky JD (2004) Early atherogenesis in senescence-accelerated mice. Exp Gerontol 39:115–122

    Article  PubMed  CAS  Google Scholar 

  • Ferrari AU, Radaelli A, Centola M (2003) Invited review: aging and the cardiovascular system. J Appl Physiol 95:2591–2597

    PubMed  Google Scholar 

  • Folkow B, Svanborg A (1993) Physiology of cardiovascular aging. Physiol Rev 73:725–764

    PubMed  CAS  Google Scholar 

  • Goyal VK (1982) Changes with age in the aorta of man and mouse. Exp Gerontol 17:127–132

    Article  PubMed  CAS  Google Scholar 

  • Hallock P, Benson IC (1937) Studies on the elastic properties of human isolated aorta. J Clin Invest 16:595–602

    Article  PubMed  CAS  Google Scholar 

  • Hogikyan RV, Supiano MA (1994) Arterial alpha-adrenergic responsiveness is decreased and SNS activity is increased in older humans. Am J Physiol 266:E717-E724

    PubMed  CAS  Google Scholar 

  • Küng CF, Lüscher TF (1995) Different mechanisms of endothelial dysfunction with aging and hypertension in rat aorta. Hypertension 25:194–200

    PubMed  Google Scholar 

  • Lee EY, Lee SY, Lee TS, Chi JG, Choi W, Suh YH (2000) Ultrastructural changes in microvessel with age in the hippocampus of senescence-accelerated mouse (SAM)-P/10. Exp Aging Res 26:3–14

    Article  PubMed  CAS  Google Scholar 

  • Llorens S, Jordan J, Nava E (2002) The nitric oxide pathway in the cardiovascular system. J Physiol Biochem 58:179–188

    Article  PubMed  CAS  Google Scholar 

  • Llorens S, Salazar FJ, Nava E (2005) Assessment of the nitric oxide system in the heart, aorta and kidney of aged Wistar-Kyoto and spontaneously hypertensive rats. J Hypertens 23:1507–1514

    Article  PubMed  CAS  Google Scholar 

  • Reddy AK, Li YH, Pham TT, Ochoa LN, Trevino MT, Hartley CJ, Michael LH, Entman ML, Taffet GE (2003) Measurement of aortic input impedance in mice: effects of age on aortic stiffness. Am J Physiol Heart Circ Physiol 285:H1464-H1470

    PubMed  CAS  Google Scholar 

  • Shirahase H, Usui H, Kurahashi K, Fujiwara M, Fukui K (1987) Possible role of endothelial thromboxane A2 in the resting tone and contractile responses to acetylcholine and arachidonic acid in canine cerebral arteries. J Cardiovasc Pharmacol 10:517–522

    Article  PubMed  CAS  Google Scholar 

  • Taddei S, Virdis A, Mattei P, Arzilli F; Salvetti A (1992) Endothelium-dependent forearm vasodilation is reduced in normotensive subjects with familial history of hypertension. J Cardiovasc Pharmacol 20:S193–S195

    PubMed  Google Scholar 

  • Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, Tomita Y, Yasuhira K, Hamamoto H, Shimizu K, Ishii M, Yamamuro T (1981) A new murine model of accelerated senescence. Mech Ageing Dev 17:183–194

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Shiokawa K, Miyaishi O (2004) Effects of housing and nutritions condition on the reproductions of SAMR1, SamP6 and SAMP8 at NILS aging farm. In: Y. Nomura et al. (eds) The Senescence Accelerated Mouse (SAM). An Animal Model of Senescence. International Congress Series 1260. Elsevier pp 167–173

  • Ueno M, Sakamoto H, Kanenishi K, Onodera M, Akiguchi I, Hosokawa M (2001) Ultrastructural and permeability features of microvessels in the periventricular area of senescence-accelerated mice (SAM). Microsc Res Tech 53:232–238

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Henning RH, van der Want JJ, van Buiten A, van Gilst WH, Buikema H (2007) Disruption of endothelial caveolae is associated with impairment of both NO as well as EDHF in acetylcholine-induced relaxation depending on their relative contribution in different vascular beds. Life Sci 80:1678–1685

    Article  PubMed  CAS  Google Scholar 

  • Yagi K, Komura S, Sasaguri Y, Yoshino K, Ohishi N (1995) Atherogenic change in the thoracic aorta of the senescence-accelerated mouse. Atherosclerosis 118:233–236

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi T, Rodman D, O’Brien R, McMurtry I (1989) Modulation of pulmonary artery contraction by endothelium-derived relaxing factor. Eur J Pharmacol 161:259–262

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Frohlich ED (2003) Ageing, hypertension and the kidney: new data on an old problem. Nephrol Dial Transplant 18:1442–1445

    Article  PubMed  Google Scholar 

  • Zhu BH, Ueno M, Matsushita T, Fujisawa H, Seriu N, Nishikawa T, Nishimura Y, Hosokawa M (2001) Effects of aging and blood pressure on the structure of the thoracic aorta in SAM mice: a model of age-associated degenerative vascular changes. Exp Gerontol 36:111–124

    Article  PubMed  CAS  Google Scholar 

  • Ziegler MG, Lake CR, Kopin IJ (1976) Plasma noradrenaline increases with age. Nature 261:333–335

    Article  PubMed  CAS  Google Scholar 

  • Zieman SJ, Gerstenblith G, Lakatta EG, Rosas GO, Vandegaer K, Ricker KM, Hare JM (2001) Upregulation of the nitric oxide-cGMP pathway in aged myocardium: physiological response to l-arginine. Circ Res 88:97–102

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by: The Spanish Ministry of Science (SAF2005-02157 and SAF2005-07919-C02-01), JCCM (04048-00 and 04005-00) and FIS-FEDER (01/3018). A.P-M. and Y.M. were supported by grants from JCCM (JI 03001 and 06016-00). We thank M.A. Olivares and A. Pérez (Complejo Hospitalario Universitario de Albacete) and A.L. Salewski for English revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eduardo Nava or Joaquín Jordán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lloréns, S., de Mera, R.M.MF., Pascual, A. et al. The senescence-accelerated mouse (SAM-P8) as a model for the study of vascular functional alterations during aging. Biogerontology 8, 663–672 (2007). https://doi.org/10.1007/s10522-007-9108-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-007-9108-4

Keywords

Navigation