Skip to main content
Log in

Application of nonlocal elasticity continuum damping models in nonlinear dynamic analysis

  • Original Research
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

In order to have a more generic representation of the damping phenomenon in seismic analysis of structures, in this paper, the already existing nonlocal elasticity continuum damping models have been adapted and extended to the inelastic domain. Adaptations of two nonlocal elasticity based damping models, Russell’s spatial hysteresis model and the extended Sorrentino model, into the nonlinear dynamic analysis is presented. Galerkin based finite element schemes are developed and the numerical implementation of the models are outlined. The performances of the nonlocal elasticity-based damping models are illustrated by studying the nonlinear dynamic responses of a four-story Reinforced Concrete frame designed to the Eurocodes. The incremental dynamic analysis study presented illustrates the fact that the proposed models are devoid of the large spurious damping actions commonly exhibited by the popular classical Rayleigh damping model. It has also been shown that in a nonlinear dynamic analysis, the proposed adaptation of the nonlocal elasticity continuum damping models might be a more realistic alternative to the popular classical Rayleigh damping model. The proposed models may be easily implemented in an existing software framework capable of solving both ordinary and integro-differential equations without adding markedly to the computational effort.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adhikari S (2000) Damping models for structural vibration. Dissertation, University of Cambridge

  • Adhikari S (2007) On the quantification of damping model uncertainity. J Sound Vib 306:153–171

    Article  Google Scholar 

  • Adhikari S, Wagner N (2004) Direct time–domain integration method for exponentially damped linear systems. Comput Struct 82:2453–2461

    Article  Google Scholar 

  • Aifantis EC (1984) On the microstructural origins of certain inelastic models. J Eng Mater Trans ASME 106:326–330

    Article  Google Scholar 

  • Aifantis EC (1999) Gradient deformation models at nano, micro, and macroscales. J Eng Mater Trans ASME 121:189–202

    Article  Google Scholar 

  • Arede AJ (1997) Seismic assessment of reinforced concrete frame structures with a new flexibility based element. Dissertation, Universidade Do Porto

  • Askes H, Metrikine AV (2002) One-dimensional dynamically consistent gradient elasticity models derived from a microstructure. Part 2: static and dynamic response. Eur J Mech A Solids 21:573–588

    Article  Google Scholar 

  • Banks HT, Inman DJ (1991) On damping mechanisms in beams. J Eng Mater Trans ASME 58:716–723

    Google Scholar 

  • Carr AJ (2007) Ruaumoko manual. Report, University of Canterbury, Christchurch

  • Charney FA (2008) Unintended consequences of modeling damping in structures. J Struct Eng 134(4):581–592

    Article  Google Scholar 

  • Chopra AK (2012) Dynamics of structures: theory and application to earthquake engineering. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Chopra AK, McKenna F (2016) Modeling viscous damping in nonlinear response history analysis of buildings for earthquake excitation. Earthq Eng Struct Dyn 45(2):193–211

    Article  Google Scholar 

  • Clough RW, Penzien J (1975) Dynamics of structures. McGraw-Hill, NY, p p634

    Google Scholar 

  • Cortes F, Mateos M, Elejabarriata MJ (2009) A direct formulation for exponentially damped systems. Comput Struct 87:391–394

    Article  Google Scholar 

  • Crisp DJ (1980) Damping models for inelastic structures. Dissertation, University of Canterbury, Christchurch

  • Dolsek M (2010) Development of computing environment for the seismic performance assessment of reinforced concrete frames by using simplified nonlinear models. Bull Earthq Eng 8:1309–1329

    Article  Google Scholar 

  • Eringen AC (1972) Nonlocal polar elastic continnua. Int J Eng Sci 10:1–16

    Article  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710

    Article  Google Scholar 

  • Eringen AC (1987) Theory of nonlocal elasticity and some applications. Res Mech 21:313–342

    Google Scholar 

  • Filippou FC, D’Ambrisi A, Issa A (1992) Nonlinear static and dynamic analysis of reinforced concrete subassemblages. Report, University of California, Berkeley

  • Flugge W (1978) Viscoelasticity, Second revised edn. Springer, Berlin

    Google Scholar 

  • Friswell MI, Sondipon A, Lei Y (2007) Non-local finite element analysis of damped beams. Int J Solids Struct 44:7564–7576

    Article  Google Scholar 

  • Gonzalez-Lopez S, Fernandez-Saez J (2012) Vibrations in Euler–Bernoulli beams treated with non-local damping patches. Comput Struct 108:125–134

    Article  Google Scholar 

  • Hall JF (2016) Discussion of ‘Modelling viscous damping in nonlinear response history analysis of buildings for earthquake excitation’ by Anil K. Chopra and Frank McKenna. Earthq Eng Struct Dyn 45(13):2229–2233

    Article  Google Scholar 

  • Hinton E, Rock T, Zienkiewicz OC (1976) A note on mass lumping and related processes in the finite element method. Earthq Struct Dyn 4:245–249

    Article  Google Scholar 

  • Lei Y, Friswell MI, Adhikari S (2006) A Galerkin method of distributed systems with non-local damping. Int J Solids Struct 43:3381–3400

    Article  Google Scholar 

  • Love AEH (1906) A treatise on the mathematical theory of elasticity. Cambridge University Press, Cambridge

    Google Scholar 

  • Metrikine AV, Askes H (2002) One-dimensional dynamically consistent gradient elasticity models derived from a microstructure. Part 2: static and dynamic response. Eur J Mech A Solids 21:555–572

    Article  Google Scholar 

  • Paolo DM, Failla G, Zingales M (2013) Non-local stiffness and damping models for shear deformable beams. Eur J Mech A Solids 40:69–83

    Article  Google Scholar 

  • Puthanpurayil AM, Carr AJ, Dhakal RP (2014) A generic time domain implementation scheme for non-classical convolution damping models. Eng Struct 71:88–98

    Article  Google Scholar 

  • Puthanpurayil AM, Lavan O, Carr AJ, Dhakal RP (2016) Elemental damping formulation: and alternative modelling of inherent damping in nonlinear dynamic analysis. Bull Earthq Eng 14:2405–2434

    Article  Google Scholar 

  • Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307

    Article  Google Scholar 

  • Russell DL (1991) On mathematical models for the elastic beam with frequency proportional damping. In: Banks HT (ed) Control and estimation in distributed parameter systems. SIAM, Philadelphia, pp 125–169

    Chapter  Google Scholar 

  • Salehi M, Sideris P (2017) Refined gradient inelastic flexibility-based formulation for members subjected to arbitrary loading. ASCE J Eng Mech 143(9):04017090

    Article  Google Scholar 

  • Sideris P, Salehi M (2016) A gradient inelastic flexibility-based frame element formulation. ASCE J Eng Mech. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001083,04016039

    Article  Google Scholar 

  • Silling SA (2000) Reformulation of elasticity theory for discontinuities and long range forces. J Mech Phys Solids 48(1):175–209

    Article  Google Scholar 

  • Silling SA, Zimmermann M, Abeyaratne R (2003) Deformation of a peridynamic bar. J Elast 73:173–190

    Article  Google Scholar 

  • Sorrentino S, Marchesiello S, Piombo BAD (2003) A new analytical technique for vibration analysis of non-proportionally damped beams. J Sound Vib 265(4):765–782

    Article  Google Scholar 

  • Val VD, Segal F (2005) Effect of damping model on pre-yielding earthquake response of structures. Eng Struct 27:1968–1980

    Article  Google Scholar 

  • Wilson EL, Clough R (1962) Dynamic response by step by step matrix analysis. In: Symposium on the use of computers in civil engineering, Lisbon

  • Wilson EL, Penzien J (1972) Evaluation of orthogonal damping matrices. Int J Numer Methods Eng 4:5–10

    Article  Google Scholar 

  • Zareian F, Medina RA (2010) A practical method for proper modeling of structural damping in inelastic plane structural systems. Comput Struct 88:45–53

    Article  Google Scholar 

Download references

Acknowledgements

First author gratefully acknowledges the funding provided by Earthquake Commission in the form postgraduate research scholarship. First author also gratefully acknowledges the fruitful discussions with Prof. Oren Lavan of Technion-Israel institute of Technology and Dr. Richard Sharpe of Beca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun M. Puthanpurayil.

Appendices

Appendix 1: Derivation of damping coefficients for the nonlocal damping models

Only the coefficient matrix for the symmetric upper triangular coefficient matrix is given here, where \( c_{ij} \) refers to the ith row and jth column element.

1.1 Russell’s damping coefficients

These coefficients are computed using Eq. (11) for Gaussian kernel function by applying the classical Hermitian cubic shape functions. For details on the variables in the coefficient matrix refer Sect. 3.1.

$$ \begin{aligned} \Re_{\theta } & = \sqrt 2 be^{{ - \left( {\frac{1}{2}\frac{{L^{2} }}{{b^{2} }}} \right)}} L^{2} + erf\left( {\frac{L}{\sqrt 2 b}} \right)\sqrt \pi L^{3} - 6\sqrt 2 bL^{2} - 8\sqrt 2 b^{3} \\ & \quad + 9L\sqrt \pi \left( {erf\left( {\frac{L}{\sqrt 2 b}} \right)} \right)b^{2} + 8\sqrt 2 e^{{\left( { - \frac{1}{2}\frac{{L^{2} }}{{b^{2} }}} \right)}} b^{3} \\ \Re_{\eta } & = 5\sqrt 2 be^{{ - \left( {\frac{1}{2}\frac{{L^{2} }}{{b^{2} }}} \right)}} L^{2} - 20\sqrt 2 bL^{2} - 24\sqrt 2 b^{3} \left( {1 - e^{{ - \left( {\frac{1}{2}\frac{{L^{2} }}{{b^{2} }}} \right)}} } \right) \\ & \quad + 27L\sqrt \pi erf\left( {\frac{1}{2}\frac{L\sqrt 2 }{b}} \right)b^{2} + 4erf\left( {\frac{L}{\sqrt 2 b}} \right)\sqrt \pi L^{3} \\ \Re_{\lambda } & = \sqrt 2 be^{{ - \left( {\frac{1}{2}\frac{{L^{2} }}{{b^{2} }}} \right)}} L^{2} - 16\sqrt 2 bL^{2} - 24\sqrt 2 b^{3} \left( {1 - e^{{ - \left( {\frac{1}{2}\frac{{L^{2} }}{{b^{2} }}} \right)}} } \right) \\ & \quad + 27L\sqrt \pi erf\left( {\frac{1}{2}\frac{L\sqrt 2 }{b}} \right)b^{2} + 2erf\left( {\frac{L}{\sqrt 2 b}} \right)\sqrt \pi L^{3} \\ c_{11} & = \frac{{6b^{2} a}}{{L^{6} \sqrt \pi }}\Re_{\theta } \\ c_{12} & = \frac{{3b^{2} a}}{{L^{5} \sqrt \pi }}\Re_{\theta } \\ c_{13} & = - c_{11} \\ c_{14} & = c_{12} \\ c_{22} & = \frac{{b^{2} a}}{{2L^{4} \sqrt \pi }}\Re_{\eta } \\ c_{23} & = - c_{12} \\ c_{24} & = \frac{{b^{2} a}}{{2L^{4} \sqrt \pi }}\Re_{\lambda } \\ c_{33} & = c_{11} \\ c_{34} & = - c_{14} \\ c_{44} & = c_{22} \\ \end{aligned} $$

1.2 Extended Sorrentino damping coefficients

The internal direct damping coefficient matrix obtained by computing Eq. (27) using classical Hermitian cubic shape functions are given as follows.

$$ \begin{aligned} c_{11} & = - \frac{{\left( {288\left( {\frac{1}{{e^{{\alpha L_{e} }} }}} \right) - 24\alpha^{3} L_{e}^{3} + \frac{{288\alpha L_{e} }}{{e^{{\alpha L_{e} }} }} + 72\alpha^{2} L_{e}^{2} \left( {\frac{1}{{e^{{\alpha L_{e} }} }} + 1} \right) - 288} \right)}}{{\alpha^{4} L_{e}^{6} }} \\ c_{12} & = \frac{{ - \left( {144\left( {\frac{1}{{e^{{\alpha L_{e} }} }}} \right) - 12\alpha^{3} L_{e}^{3} + 144\alpha L_{e} \left( {\frac{1}{{e^{{\alpha L_{e} }} }}} \right) + 36\alpha^{2} L_{e}^{2} \left( {\frac{1}{{e^{{\alpha L_{e} }} }} + 1} \right) - 144} \right)}}{{\alpha^{4} L_{e}^{5} }} \\ c_{13} & = \frac{{\left( {288\left( {\frac{1}{{e^{{\alpha L_{e} }} }}} \right) - 24\alpha^{3} L_{e}^{3} + 288\alpha L_{e} \left( {\frac{1}{{e^{{\alpha L_{e} }} }}} \right) + 72\alpha^{2} L_{e}^{2} \left( {\frac{1}{{e^{{\alpha L_{e} }} }} + 1} \right) - 288} \right)}}{{\alpha^{4} L_{e}^{6} }} \\ c_{14} & = - \frac{{\left( {144\left( {\frac{1}{{e^{{\alpha L_{e} }} }}} \right) - 12\alpha^{3} L_{e}^{3} + 144\alpha L_{e} \left( {\frac{1}{{e^{{\alpha L_{e} }} }}} \right) + 36\alpha^{2} L_{e}^{2} \left( {\frac{1}{{e^{{\alpha L_{e} }} }} + 1} \right) - 144} \right)}}{{\alpha^{4} L_{e}^{5} }} \\ c_{22} & = - \frac{{\left( {4\left( {2\alpha L_{e} + 3} \right)\left( {\frac{6}{{e^{{\alpha L_{e} }} }}} \right) - \alpha^{2} L_{e}^{2} + 4\alpha L_{e} + 2\alpha L_{e} \left( {\frac{1}{{e^{{\alpha L_{e} }} }}} \right) - 6} \right)}}{{\alpha^{4} L_{e}^{4} }} \\ c_{23} & = \frac{{\left( {144\left( {\frac{1}{{e^{{\alpha L_{e} }} }}} \right) - 12\alpha^{3} L_{e}^{3} + 144\alpha L_{e} \left( {\frac{1}{{e^{{\alpha L_{e} }} }}} \right) + 36\alpha^{2} L_{e}^{2} \left( {\frac{1}{{e^{{\alpha L_{e} }} }} + 1} \right) - 144} \right)}}{{\alpha^{4} L_{e}^{5} }} \\ c_{24} & = - \frac{{\left( {72\left( {\frac{1}{{e^{{\alpha L_{e} }} }}} \right) - 4\alpha^{3} L_{e}^{3} + 72\alpha L_{e} \left( {\frac{1}{{e^{{\alpha L_{e} }} }}} \right) + \alpha^{2} L_{e}^{2} \left( {\frac{20}{{e^{{\alpha L_{e} }} }} + 16} \right) - 72} \right)}}{{\alpha^{4} L_{e}^{4} }} \\ c_{33} & = - \frac{{\left( {288\left( {\frac{1}{{e^{{\alpha L_{e} }} }}} \right) - 24\alpha^{3} L_{e}^{3} + \frac{{288\alpha L_{e} }}{{e^{{\alpha L_{e} }} }} + 72\alpha^{2} L_{e}^{2} \left( {\frac{1}{{e^{{\alpha L_{e} }} }} + 1} \right) - 288} \right)}}{{\alpha^{4} L_{e}^{6} }} \\ c_{34} & = \frac{{\left( {144\left( {\frac{1}{{e^{{\alpha L_{e} }} }}} \right) - 12\alpha^{3} L_{e}^{3} + 144\alpha L_{e} \left( {\frac{1}{{e^{{\alpha L_{e} }} }}} \right) + 36\alpha^{2} L_{e}^{2} \left( {\frac{1}{{e^{{\alpha L_{e} }} }} + 1} \right) - 144} \right)}}{{\alpha^{4} L_{e}^{5} }} \\ c_{44} & = - \frac{{\left( {4\left( {2\alpha L_{e} + 3} \right)\left( {\frac{6}{{e^{{\alpha L_{e} }} }}} \right) - \alpha^{2} L_{e}^{2} + 4\alpha L_{e} + 2\alpha L_{e} \left( {\frac{1}{{e^{{\alpha L_{e} }} }}} \right) - 6} \right)}}{{\alpha^{4} L_{e}^{4} }} \\ \end{aligned} $$

Appendix 2: Computation of elemental frequencies using consistent mass matrix (Puthanpurayil et al. 2016)

Elemental frequencies of beam elements are computed assuming a free–free boundary condition. The consistent mass matrix is given as,

$$ {\mathbf{M}} = \frac{{\rho A_{e} l_{e} }}{420}\left[ {\begin{array}{*{20}c} {4l_{e}^{2} } & { - 3l_{e}^{2} } \\ { - 3l_{e}^{2} } & {4l_{e}^{2} } \\ \end{array} } \right] $$
(62)

and the flexibility matrix with plastic hinge spring flexibility \( f_{s} \) in series is given as,

$$ {\mathbf{F}} = \left[ {\begin{array}{*{20}c} {\frac{{2l_{e} }}{{6EI_{e} }} + f_{s} } & {\frac{{l_{e} }}{{6EI_{e} }}} \\ {\frac{{l_{e} }}{{6EI_{e} }}} & {\frac{{2l_{e} }}{{6EI_{e} }} + f_{s} } \\ \end{array} } \right] $$
(63)

Now, elemental frequencies can be computed by solving Eq. 64 given below as,

$$ \left[ {\begin{array}{*{20}c} {\frac{{2l_{e} }}{{6EI_{e} }} + f_{s} } & {\frac{{l_{e} }}{{6EI_{e} }}} \\ {\frac{{l_{e} }}{{6EI_{e} }}} & {\frac{{2l_{e} }}{{6EI_{e} }} + f_{s} } \\ \end{array} } \right]\frac{{\rho A_{e} l_{e}^{3} }}{420}\left[ {\begin{array}{*{20}c} 4 & { - 3} \\ { - 3} & 4 \\ \end{array} } \right]\left\{ {\begin{array}{*{20}c} {\varphi_{e,1} } \\ {\varphi_{e,2} } \\ \end{array} } \right\} = \frac{1}{{\omega_{e}^{2} }}\left[ {\begin{array}{*{20}c} 1 & 0 \\ 0 & 1 \\ \end{array} } \right] $$
(64)

Solving Eq. 64 gives the elemental frequencies and elemental mode shapes for the element under consideration.

Appendix 3: Frame details (Puthanpurayil et al. 2016)

The frame details are described in this section for easier readability of the paper and is directly adopted from Puthanpurayil et al. (2016).

3.1 Material property (Dolsek 2010)

Adopted value for the present study is given as below:

$$ \begin{aligned} & {\text{Mean}}\,{\text{concrete}}\,{\text{strength}} = 33\,{\text{MPa}} \\ & {\text{Modulus}}\,{\text{of}}\,{\text{elasticity}} = 3.1 \times 10^{10} \,{\text{N/m}}^{2} \\ \end{aligned} $$

See Fig. 7.

Fig. 7
figure 7

Four story frame

3.2 Geometric properties (Arede 1997)

Member number

Width of the member (mm)

Depth of the member (mm)

1, 6, 11, 16, 17, 12, 7, 2, 3, 8, 13, 18

450

450

4, 5, 9, 10, 14, 15, 19, 20

300

450

3.3 Nodal mass (Arede 1997)

Floor level

Mass per node (kg)

1st floor

29,800

2nd–4th floor

29,500

3.4 Yield rotations

Yield rotations are computed as described in Puthanpurayil et al. (2016).

Member number

Yield rotation (ith node) (positive/negative) (rad)

Yield rotation (jth node) (positive/negative) (rad)

1, 2, 3

0.04

0.0074

6, 8, 11, 13, 16, 18

0.0064

0.0064

7

0.0054

0.0061

12, 17

0.0061

0.0061

4, 9

0.0093

0.0093

5, 10

0.0062

0.0062

14, 19

0.009

0.009

15, 20

0.006

0.006

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puthanpurayil, A.M., Carr, A.J. & Dhakal, R.P. Application of nonlocal elasticity continuum damping models in nonlinear dynamic analysis. Bull Earthquake Eng 16, 6269–6297 (2018). https://doi.org/10.1007/s10518-018-0412-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-018-0412-y

Keywords

Navigation