Skip to main content
Log in

Uridine Administration Promotes Normalization of Heart Mitochondrial Function in Dystrophin-Deficient Mice and Decreases Tissue Fibrosis

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

The work shows the effect of the metabolic modulator uridine on the functioning and ultrastructure of heart mitochondria in dystrophin-deficient mdx mice. Intraperitoneal administration of uridine (30 mg/kg/day for 28 days) improved K+ transport and increased its content in the heart mitochondria of mdx mice to the level of wild-type animals. This was accompanied by a significant decrease in the level of malondialdehyde and an increase in the number of mitochondria in the heart of mdx mice. At the same time, uridine did not affect the hyperfunctionality of mitochondria in mdx mice, which manifested in an increase in the calcium retention capacity. Nevertheless, we noted that uridine causes a significant decrease in the level of fibrosis in the heart of mdx mice, which attested to a positive effect of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dubinin MV, Belosludtsev KN. Ion Channels of the Sarcolemma and Intracellular Organelles in Duchenne Muscular Dystrophy: A Role in the Dysregulation of Ion Homeostasis and a Possible Target for Therapy. Int. J. Mol. Sci. 2023;24(3):2229. doi: https://doi.org/10.3390/ijms24032229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Dubinin MV, Starinets VS, Talanov EY, Mikheeva IB, Belosludtseva NV, Serov DA, Tenkov KS, Belosludtseva EV, Belosludtsev KN. Effect of the Non-Immunosuppressive MPT Pore Inhibitor Alisporivir on the Functioning of Heart Mitochondria in Dystrophin-Deficient mdx Mice. Biomedicines. 2021;9(9):1232. doi: https://doi.org/10.3390/biomedicines9091232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Dubinin MV, Starinets VS, Chelyadnikova YA, Belosludtseva NV, Mikheeva IB, Penkina DK, Igoshkina AD, Talanov EY, Kireev II, Zorov DB, Belosludtsev KN. Effect of Large-Conductance Calcium-Dependent K+ Channel Activator NS1619 on Function of Mitochondria in the Heart of Dystrophin-Deficient Mice. Biochemistry (Mosc). 2023;88(2):189-201. doi: https://doi.org/10.1134/S0006297923020037

    Article  PubMed  CAS  Google Scholar 

  4. Dubinin MV, Starinets VS, Belosludtseva NV, Mikheeva IB, Chelyadnikova YA, Penkina DK, Vedernikov AA, Belosludtsev KN. The Effect of Uridine on the State of Skeletal Muscles and the Functioning of Mitochondria in Duchenne Dystrophy. Int. J. Mol. Sci. 2022;23(18):10660. doi: https://doi.org/10.3390/ijms231810660

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Zhang Y, Guo S, Xie C, Fang J. Uridine Metabolism and Its Role in Glucose, Lipid, and Amino Acid Homeostasis. Biomed. Res. Int. 2020;2020:7091718. doi: https://doi.org/10.1155/2020/7091718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Le TT, Ziemba A, Urasaki Y, Hayes E, Brotman S, Pizzorno G. Disruption of uridine homeostasis links liver pyrimidine metabolism to lipid accumulation. J. Lipid Res. 2013;54(4):1044-1057. doi: https://doi.org/10.1194/jlr.M034249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Krylova IB, Selina EN, Bulion VV, Rodionova OM, Evdokimova NR, Belosludtseva NV, Shigaeva MI, Mironova GD. Uridine treatment prevents myocardial injury in rat models of acute ischemia and ischemia/reperfusion by activating the mitochondrial ATP-dependent potassium channel. Sci. Rep. 2021;11(1):16999. doi: https://doi.org/10.1038/s41598-021-96562-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Belosludtseva NV, Starinets VS, Pavlik LL, Mikheeva IB, Dubinin MV, Belosludtsev KN. The Effect of S-15176 Difumarate Salt on Ultrastructure and Functions of Liver Mitochondria of C57BL/6 Mice with Streptozotocin/High-Fat Diet-Induced Type 2 Diabetes. Biology (Basel). 2020;9(10):309. doi: https://doi.org/10.3390/biology9100309

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Baranova OV, Skarga YY, Negoda AE, Mironova GD. Inhibition of 2,4-dinitrophenol-induced potassium efflux by adenine nucleotides in mitochondria. Biochemistry (Mosc). 2000;65(2):218-222.

    PubMed  CAS  Google Scholar 

  10. Dubinin MV, Starinets VS, Belosludtseva NV, Mikheeva IB, Chelyadnikova YA, Igoshkina AD, Vafina AB, Vedernikov AA, Belosludtsev KN. BKCa Activator NS1619 Improves the Structure and Function of Skeletal Muscle Mitochondria in Duchenne Dystrophy. Pharmaceutics. 2022;14(11):2336. doi: https://doi.org/10.3390/pharmaceutics14112336

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Dubinin.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 176, No. 7, pp. 65-70, July, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinin, M.V., Belosludtseva, N.V., Mikheeva, I.B. et al. Uridine Administration Promotes Normalization of Heart Mitochondrial Function in Dystrophin-Deficient Mice and Decreases Tissue Fibrosis. Bull Exp Biol Med 176, 54–59 (2023). https://doi.org/10.1007/s10517-023-05966-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-023-05966-0

Keywords

Navigation