Skip to main content
Log in

Changes of Pulmonary Microhemodynamics in Experimental Pulmonary Thromboembolism after Pretreatment with K-Channel Activators

  • GENERAL PATHOLOGY AND PATHOLOGICAL PHYSIOLOGYGENERAL PHYSIOLOGY
  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Changes in pulmonary microhemodynamics in response to pulmonary embolism under conditions of activation of KATP channels with nicorandil, Kv channels with dapagliflozin, and BKCa channels with Evans blue were studied on isolated rabbit lungs. Under conditions of activation of KATP and BKCa channels, the constrictor reactions of the pulmonary arterial vessels during embolization of the pulmonary artery were less pronounced than in the control. Activation of BKCa channels reduced constrictor reactions of the pulmonary venous vessels, while activation of KATP and Kv channels eliminates them. The shifts of the capillary filtration coefficient are determined to a greater extent by the pre-/postcapillary resistance ratio, than by changes of the endothelial permeability. Pretreatment with dapagliflozin led to a decrease in the capillary filtration coefficient. It was established, that nimesulide exhibits properties of a BKCa-channel activator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ebenezar KK, Wong AK, Smith FG. Haemodynamic responses to angiotensin II in conscious lambs: role of nitric oxide and prostaglandin ns. Pflugers Arch. 2012;463(3)399-404. doi: https://doi.org/10.1007/s00424-011-1065-8

    Article  CAS  PubMed  Google Scholar 

  2. Evlakhov VI, Berezina TP, Poyassov IZ, Ovsyannikov VI. Pulmonary Microcirculation during Experimental Pulmonary Thromboembolism under Conditions of Activation and Blockade of Muscarinic Acetylcholine Receptors. Bull. Exp. Biol. Med. 2021;171(2):198-201. doi: https://doi.org/10.1007/s10517-021-05194-4

    Article  CAS  PubMed  Google Scholar 

  3. Fu YS, Kuo SY, Lin HY, Chen CL, Huang SY, Wen ZH, Lee KZ, Huang HT. Pretreatment with Evans blue, a stimulator of BK(Ca) channels, inhibits compound 48/80-induced shock, systemic inflammation, and mast cell degranulation in the rat. Histochem. Cell. Biol. 2015;144(3):237-247. doi: https://doi.org/10.1007/s00418-015-1332-4

    Article  CAS  PubMed  Google Scholar 

  4. Lambert M, Capuano V, Olschewski A, Sabourin J, Nagaraj C, Girerd B, Weatherald J, Humbert M, Antigny F. Ion Channels in Pulmonary Hypertension: A Therapeutic Interest? Int. J. Mol. Sci. 2018;19(10):3162. doi: https://doi.org/10.3390/ijms19103162

    Article  CAS  Google Scholar 

  5. Li H, Shin SE, Seo MS, An JR, Choi IW, Jung WK, Firth AL, Lee DS, Yim MJ, Choi G, Lee JM, Na SH, Park WS. The anti-diabetic drug dapagliflozin induces vasodilation via activation of PKG and Kv channels. Life Sci. 2018;197:46-55. doi: https://doi.org/10.1016/j.lfs.2018.01.032

    Article  CAS  PubMed  Google Scholar 

  6. Li H, Zhang Y, Wang S, Yue Y, Liu Q, Huang S, Peng H, Zhang Y, Zeng W, Wu Z. Dapagliflozin has No Protective Effect on Experimental Pulmonary Arterial Hypertension and Pulmonary Trunk Banding Rat Models. Front. Pharmacol. 2021;12:756226. doi: https://doi.org/10.3389/fphar.2021.756226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Li X, Römer G, Kerindongo RP, Hermanides J, Albrecht M, Hollmann MW, Zuurbier CJ, Preckel B, Weber NC. Sodium Glucose Co-Transporter 2 Inhibitors Ameliorate Endothelium Barrier Dysfunction Induced by Cyclic Stretch through Inhibition of Reactive Oxygen Species. Int. J. Mol. Sci. 2021;22(11):6044. doi: https://doi.org/10.3390/ijms22116044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sahara M, Sata M, Morita T, Hirata Y, Nagai R. Nicorandil attenuates monocrotaline-induced vascular endothelial damage and pulmonary arterial hypertension. PLoS One. 2012;7(3):e33367. doi: https://doi.org/10.1371/journal.pone.0033367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sancho M, Kyle BD. The Large-Conductance, Calcium-Activated Potassium Channel: A Big Key Regulator of Cell Physiology. Front. Physiol. 2021;12:750615. doi: https://doi.org/10.3389/fphys.2021.750615

    Article  PubMed  PubMed Central  Google Scholar 

  10. Seedher N, Bhatia S. Solubility enhancement of Cox-2 inhibitors using various solvent systems. AAPS PharmSciTech. 2003;4(3):E33. doi: https://doi.org/10.1208/pt040333

    Article  CAS  PubMed  Google Scholar 

  11. Tian W, Jiang X, Sung YK, Qian J, Yuan K, Nicolls MR. Leukotrienes in pulmonary arterial hypertension. Immunol. Res. 2014;58(2-3):387-393. doi: https://doi.org/10.1007/s12026-014-8492-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsung YC, Chung CY, Wan HC, Chang YY, Shih PC, Hsu HS, Kao MC, Huang CJ. Dimethyl Sulfoxide Attenuates Acute Lung Injury Induced by Hemorrhagic Shock/Resuscitation in Rats. Inflammation. 2017;40(2):555-565. doi: https://doi.org/10.1007/s10753-016-0502-4

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Evlakhov.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 173, No. 3, pp. 289-293, March, 2022

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evlakhov, V.I., Poyasov, I.Z. & Berezina, T.P. Changes of Pulmonary Microhemodynamics in Experimental Pulmonary Thromboembolism after Pretreatment with K-Channel Activators. Bull Exp Biol Med 173, 302–305 (2022). https://doi.org/10.1007/s10517-022-05538-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-022-05538-8

Key Words

Navigation