Skip to main content
Log in

The Level of LINE-1 mRNA Is Increased in Extracellular Circulating Plasma RNA in Patients with Colorectal Cancer

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We performed a comparative quantitative analysis of LINE-1 mRNA levels in extracellular total plasma RNA in patients with colon cancer and practically healthy donors. Quantitative multiplex PCR with reverse transcription was used to assess the level of LINE-1 and 18S rRNA mRNA in extracellular total plasma RNA. The median of LINE-1 mRNA values in colon cancer patients (4.95) was significantly higher than in healthy donors (2.3) (p=0.037). It was shown for the first time that the level of LINE-1 mRNA in total RNA from blood plasma can be determined in the format of a liquid biopsy and serve as a new potential non-invasive marker of colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams JW, Kaufman RE, Kretschmer PJ, Harrison M, Nienhuis AW. A family of long reiterated DNA sequences, one copy of which is next to the human beta globin gene. Nucleic Acids Res. 1980;8(24):6113-6128. doi: https://doi.org/10.1093/nar/8.24.6113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baba Y, Yagi T, Sawayama H, Hiyoshi Y, Ishimoto T, Iwatsuki M, Miyamoto Y, Yoshida N, Baba H. Long Interspersed Element-1 Methylation Level as a Prognostic Biomarker in Gastrointestinal Cancers. Digestion. 2018;97(1):26-30. doi: https://doi.org/10.1159/000484104

    Article  CAS  PubMed  Google Scholar 

  3. De Luca C, Guadagni F, Sinibaldi-Vallebona P, Sentinelli S, Gallucci M, Hoffmann A, Schumann GG, Spadafora C, Sciamanna I. Enhanced expression of LINE-1-encoded ORF2 protein in early stages of colon and prostate transformation. Oncotarget. 2016;7(4):4048-4061. doi: https://doi.org/10.18632/oncotarget.6767

    Article  PubMed  Google Scholar 

  4. Deniz Ö, Frost JM, Branco MR. Regulation of transposable elements by DNA modifications. Nat. Rev. Genet. 2019;20(7):417-431. doi: https://doi.org/10.1038/s41576-019-0106-6

    Article  CAS  PubMed  Google Scholar 

  5. Duggal NK, Emerman M. Evolutionary conflicts between viruses and restriction factors shape immunity. Nat. Rev. Immunol. 2012;12(10):687-695. doi: https://doi.org/10.1038/nri3295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hancks DC, Kazazian HH Jr. Active human retrotransposons: variation and disease. Curr. Opin. Genet. Dev. 2012;22(3):191-203. doi: https://doi.org/10.1016/j.gde.2012.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kano H, Godoy I, Courtney C, Vetter MR, Gerton GL, Ostertag EM, Kazazian HH Jr. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev. 2009;23(11):1303-1312. doi: https://doi.org/10.1101/gad.1803909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kulpa DA, Moran JV. Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat. Struct. Mol. Biol. 2006;13(7):655-660. doi: https://doi.org/10.1038/nsmb1107

    Article  CAS  PubMed  Google Scholar 

  9. Lander ES, Linton LM, Birren B. et al. Initial sequencing and analysis of the human genome. Nature. 2001;409:860-921. doi: https://doi.org/10.1038/35057062

    Article  CAS  PubMed  Google Scholar 

  10. Martin SL, Bushman FD. Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol. Cell Biol. 2001;21(2):467-75. doi: https://doi.org/10.1128/MCB.21.2.467-475.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rodriguez-Martin B, Alvarez EG, Baez-Ortega A, Zamora J, Supek F, Demeulemeester J, Santamarina M, Ju YS, Temes J, Garcia-Souto D, Detering H, Li Y, Rodriguez-Castro J, Dueso-Barroso A, Bruzos AL, Dentro SC, Blanco MG, Contino G, Ardeljan D, Tojo M, Roberts ND, Zumalave S, Edwards PAW, Weischenfeldt J, Puiggròs M, Chong Z, Chen K, Lee EA, Wala JA, Raine K, Butler A, Waszak SM, Navarro FCP, Schumacher SE, Monlong J, Maura F, Bolli N, Bourque G, Gerstein M, Park PJ, Wedge DC, Beroukhim R, Torrents D, Korbel JO, Martincorena I, Fitzgerald RC, Van Loo P, Kazazian HH, Burns KH; PCAWG Structural Variation Working Group, Campbell PJ, Tubio JMC; PCAWG Consortium. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat. Genet. 2020;52(3):306-319. doi: https://doi.org/10.1038/s41588-019-0562-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Solovyov A, Vabret N, Arora KS, Snyder A, Funt SA, Bajorin DF, Rosenberg JE, Bhardwaj N, Ting DT, Greenbaum BD. Global Cancer Transcriptome Quantifies Repeat Element Polarization between Immunotherapy Responsive and T Cell Suppressive Classes. Cell Rep. 2018;23(2):512-521. doi: https://doi.org/10.1016/j.celrep.2018.03.042

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ, Contino G, Deshpande V, Iafrate AJ, Letovsky S, Rivera MN, Bardeesy N, Maheswaran S, Haber DA. Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science. 2011;331(6017):593-596. doi: https://doi.org/10.1126/science.1200801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Walter M, Teissandier A, Pérez-Palacios R, Bourc’his D. An epigenetic switch ensures transposon repression upon dynamic loss of DNA methylation in embryonic stem cells. Elife. 2016;5:e11418. doi: https://doi.org/10.7554/eLife.11418

  15. Wilhelm M, Wilhelm FX. Reverse transcription of retroviruses and LTR retrotransposons. Cell Mol. Life Sci. 2001;58(9):1246-1262. doi: https://doi.org/10.1007/PL00000937

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Filipenko.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 173, No. 2, pp. 242-245, February, 2022

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filipenko, M.L., Boyarskikh, U.A., Leskov, L.S. et al. The Level of LINE-1 mRNA Is Increased in Extracellular Circulating Plasma RNA in Patients with Colorectal Cancer. Bull Exp Biol Med 173, 261–264 (2022). https://doi.org/10.1007/s10517-022-05530-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-022-05530-2

Key Words

Navigation