Skip to main content

Advertisement

Log in

Secretory Activity of Mesenchymal Stromal Cells with Different Degree of Commitment under Conditions of Simulated Microgravity

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Microgravity negatively affects the bone tissue which manifested in a decrease in mineral density of the bones during long-term space flights. Impairments of bone homeostasis are determined among other things by changes in secretory activity of heterogeneous populations of low-committed precursors, such as mesenchymal stromal cells (MSC) and osteoblasts. We studied the effect of microgravity modeling during 10 days on paracrine activity of osteogenically committed and intact MSC. Cell response to simulated microgravity depended on the degree of commitment. The response of osteogenically committed MSC was less pronounced and manifested in increased production of sclerostin. In intact MSC, an increase in IL-8 and VEGF secretion and a decrease in osteoprotegerin level were detected. These changes can underlie the shift of bone homeostasis towards bone resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gershovich YuG, Buravkova LB. Interleukine production in culture of mesenchymal stromal cells of humans during simulation of the microgravity effects. Aviakosm. Ekol. Med. 2009;43(3):44-50. Russian.

    Google Scholar 

  2. Kapitonova MY, Kuznetsov SL, Salim N, Othman S, Kamauzaman TM, Ali AM, Nawawi HM, Nor-Ashikin MN, Froemming GR. Morphological and phenotypical characteristics of human osteoblasts after short-term space mission. Bull. Exp. Biol. Med. 2014;156(3):393-398. doi: https://doi.org/10.1007/s10517-014-2357-8

    Article  PubMed  Google Scholar 

  3. Klotz IN, Gvozdik TE, Oganesyan AO, Karal-Ogly DD, Demenkova NP, Mukhametzyanova EI, Gvaramiya IA, Danilova IG, Agrba VZ, Lapin BA. Water Immersion as a Model of Hypogravity. Bull. Exp. Biol. Med. 2019;167(2):284-286. doi: https://doi.org/10.1007/s10517-019-04510-3

    Article  CAS  PubMed  Google Scholar 

  4. Oganov VS, Bakuin AV, Novikov VE, Kabitskaya OE, Murashko LM. Characteristics and patterns of the human bone reactions to microgravity. Aviakosm. Ekol. Med. 2006;40(4):15-22. Russian.

    CAS  Google Scholar 

  5. Brkovic A, Sirois MG. Vascular permeability induced by VEGF family members in vivo: role of endogenous PAF and NO synthesis. J. Cell. Biochem. 2007;100(3):727-737.

    Article  CAS  Google Scholar 

  6. Buravkova LB, Gershovich PM, Gershovich JG, Grigor’ev AI. Mechanisms of gravitational sensitivity of osteogenic precursor cells. Acta Naturae. 2010;2(1):28-36.

    Article  CAS  Google Scholar 

  7. Di Benedetto A, Gigante I, Colucci S, Grano M. Periodontal disease: linking the primary inflammation to bone loss. Clin. Dev. Immunol. 2013;2013:503754. doi: https://doi.org/10.1155/2013/503754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dittrich A, Grimm D, Sahana J, Bauer J, Krüger M, Infanger M, Magnusson NE. Key proteins involved in spheroid formation and angiogenesis in endothelial cells after long-term exposure to simulated microgravity. Cell. Physiol. Biochem. 2018;45(2):429-445.

    Article  CAS  Google Scholar 

  9. Han B, Zhang Y, Li H, Wei S, Li R, Zhang X. Research of simulated microgravity regulate MC3T3-E1 cells differentiation through the nuclear factor-kappa B signaling pathway. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2019;36(3):421-427.

    PubMed  Google Scholar 

  10. Hoffmann E, Dittrich-Breiholz O, Holtmann H, Kracht M. Multiple control of interleukin-8 gene expression. J. Leuk. Biol. 2002;72(5):847-855.

    CAS  Google Scholar 

  11. Li L, Zhang C, Chen JL, Hong FF, Chen P, Wang JF. Effects of simulated microgravity on the expression profiles of RNA during osteogenic differentiation of human bone marrow mesenchymal stem cells. Cell Prolif. 2018;52(2):e12539. doi: https://doi.org/10.1111/cpr.12539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Löwik CW, Reeve J. Sclerostin is a delayed secreted product of osteocytes that inhibits boneformation. FASEB J. 2005;19(13):1842-1844.

    Article  CAS  Google Scholar 

  13. Qin YX, Lin W, Mittra E, Xia Y, Cheng J, Judex S, Rubin C, Müller R. Prediction of trabecular bone qualitative properties using scanning quantitative ultrasound. Acta Astronaut. 2013;92(1):79-88.

    Article  Google Scholar 

  14. Ratushnyy A, Ezdakova M, Yakubets D, Buravkova L. Angiogenic activity of human adipose-derived mesenchymal stem cells under simulated microgravity. Stem Cells Dev. 2018;27(12):831-837.

    Article  CAS  Google Scholar 

  15. Rucci N, Rufo A, Alamanou M, Teti A. Modeled microgravity stimulates osteoclastogenesis and bone resorption by increasing osteoblast RANKL/OPG ratio. J. Cell. Biochem. 2007;100(2):464-473.

    Article  CAS  Google Scholar 

  16. Van Loon J. Some history and use of the random positioning machine, RPM, in gravity related research. Adv. Space Res. 2007;39(7):1161-1165.

    Google Scholar 

  17. Weitzmann MN. The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica (Cairo). 2013;2013:125705. doi: https://doi.org/10.1155/2013/125705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Buravkova.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 272-277, December, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhivodernikov, I.V., Ratushnyy, A.Y. & Buravkova, L.B. Secretory Activity of Mesenchymal Stromal Cells with Different Degree of Commitment under Conditions of Simulated Microgravity. Bull Exp Biol Med 170, 560–564 (2021). https://doi.org/10.1007/s10517-021-05106-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-021-05106-6

Key Words

Navigation