Skip to main content

Advertisement

Log in

Comparative Analysis of Secretome of Human Umbilical Cord- and Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells

Bulletin of Experimental Biology and Medicine Aims and scope

Production of cytokines and growth factors by cultured human umbilical cord tissue- and bone marrow-derived multipotent mesenchymal stromal cells was measured by multiplex analysis. In most cases, the concentrations of bioactive factors in the culture medium conditioned by umbilical cord-derived cells was ten- to hundred-times higher than in the medium conditioned by bone marrow-derived cells. These results suggest that both multipotent mesenchymal stromal cells from the umbilical cord and cell-free products can have more pronounced therapeutic effect in comparison with mesenchymal stromal cells obtained from “adult” sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Romanov YA, Balashova EE, Volgina NE, Kabaeva NV, Dugina TN, Sukhikh GT. Optimized Protocol for Isolation of Multipotent Mesenchymal Stromal Cells from Human Umbilical Cord. Bull. Exp. Biol. Med. 2015;160(1):148-154.

    Article  CAS  PubMed  Google Scholar 

  2. Romanov YA, Balashova EE, Volgina NE, Kabaeva NV, Dugina TN, Sukhikh GT. Human Umbilical Cord Blood Serum: Effective Substitute of Fetal Bovine Serum for Culturing of Human Multipotent Mesenchymal Stromal Cells. Bull. Exp. Biol. Med. 2017;162(4):528-533.

    Article  PubMed  Google Scholar 

  3. Romanov YA, Balashova EE, Volgina NE, Kabaeva NV, Dugina TN, Sukhikh GT. Isolation of Multipotent Mesenchymal Stromal Cells from Cryopreserved Human Umbilical Cord Tissue. Bull. Exp. Biol. Med. 2016;160(4):530-534.

    Article  CAS  PubMed  Google Scholar 

  4. Romanov YA, Balashova EE, Volgina NE, Kabaeva NV, Dugina TN, Sukhikh GT. Expression of Surface Molecules in Human Mesenchymal Stromal Cells Co-Cultured with Nucleated Umbilical Cord Blood Cells. Bull. Exp. Biol. Med. 2017;162(4):578-582.

    Article  CAS  PubMed  Google Scholar 

  5. Romanov YA, Volgina NE, Balashova EE, Kabaeva NV, Dugina TN, Sukhikh GT. Human Umbilical Cord Mesenchymal Stromal Cells Support Viability of Umbilical Cord Blood Hematopoietic Stem Cells but not the “Stemness” of Their Progeny in Co-Culture. Bull. Exp. Biol. Med. 2017; 163(4):523-527.

    Article  PubMed  Google Scholar 

  6. Romanov YA, Volgina NE, Dugina TN, Kabaeva NV, Sukhikh GT. Human Umbilical Cord Mesenchymal Stromal Cell-Derived Microvesicles Express Surface Markers Identical to the Phenotype of Parental Cells. Bull. Exp. Biol. Med. 2018;166(1):124-129.

    Article  CAS  PubMed  Google Scholar 

  7. Romanov YuA, Romanov AYu. Tissues of perinatal origin is a unique source of cells for regenerative medicine. Part I. Cord blood. Naonatologiya: Novosti, Mneniya, Obuchenie. 2018;6(2):64-77. Russian.

    Google Scholar 

  8. Abbasi-Malati Z, Roushandeh AM, Kuwahara Y, Roudkenar MH. Mesenchymal stem cells on horizon: a new arsenal of therapeutic agents. Stem Cell Rev. 2018;14(4):484-499.

    Article  CAS  Google Scholar 

  9. Arutyunyan I, Elchaninov A, Fatkhudinov T, Makarov A, Kananykhina E, Usman N, Bolshakova G, Glinkina V, Goldshtein D, Sukhikh G. Elimination of allogeneic multipotent stromal cells by host macrophages in different models of regeneration. Int. J. Clin. Exp. Pathol. 2015;8(5):4469-4480.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Batsali AK, Kastrinaki MC, Papadaki HA, Pontikoglou C. Mesenchymal stem cells derived from Wharton’s Jelly of the umbilical cord: biological properties and emerging clinical applications. Curr. Stem Cell Res. Ther. 2013;8(2):144-155.

    Article  CAS  PubMed  Google Scholar 

  11. Beer L, Mildner M, Ankersmit HJ. Cell secretome based drug substances in regenerative medicine: when regulatory affairs meet basic science. Ann. Transl. Med. 2017;5(7):170.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, Fisk NM. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood. 2001;98(8):2396-2402.

    Article  CAS  PubMed  Google Scholar 

  13. Can A, Celikkan FT, Cinar O. Umbilical cord mesenchymal stromal cell transplantations: A systemic analysis of clinical trials. Cytotherapy. 2017;19(12):1351-1382.

    Article  PubMed  Google Scholar 

  14. Caplan AI. Mesenchymal stem cells. J. Orthop. Res. 1991; 9(5):641-650.

    Article  CAS  PubMed  Google Scholar 

  15. Ding DC, Chang YH, Shyu WC, Lin SZ. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy. Cell Transplant. 2015;24(3):339-347.

    Article  PubMed  Google Scholar 

  16. Igura K, Zhang X, Takahashi K, Mitsuru A, Yamaguchi S, Takashi TA. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy. 2004;6(6):543-553.

    Article  CAS  PubMed  Google Scholar 

  17. Kalaszczynska I, Ferdyn K. Wharton’s jelly derived mesenchymal stem cells: future of regenerative medicine? Recent findings and clinical significance. Biomed. Res. Int. 2015;2015. ID 430847. doi: https://doi.org/10.1155/2015/430847.

  18. Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Res. Ther. 2018;9(1):63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Konala VB, Mamidi MK, Bhonde R, Das AK, Pochampally R, Pal R. The current landscape of the mesenchymal stromal cell secretome: a new paradigm for cell-free regeneration. Cytotherapy. 2016;18(1):13-24.

    Article  CAS  PubMed  Google Scholar 

  20. Pawitan JA. Prospect of stem cell conditioned medium in regenerative medicine. Biomed. Res. Int. 2014;2014. ID 965849. doi: https://doi.org/10.1155/2014/965849.

  21. Romanov YA, Svintsitskaya VA, Smirnov VN. Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells. 2003;21(1):105-110.

    Article  PubMed  Google Scholar 

  22. Tsai MS, Lee JL, Chang YJ, Hwang SM. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum. Reprod. 2004;19(6):1450-1456.

    Article  PubMed  Google Scholar 

  23. Zvaifler NJ, Marinova-Mutafchieva L, Adams G, Edwards CJ, Moss J, Burger JA, Maini RN. Mesenchymal precursor cells in the blood of normal individuals. Arthritis Res. 2000;2(6):477-488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Romanov.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 4, pp. 220-225, December, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanov, Y.A., Volgina, N.E., Vtorushina, V.V. et al. Comparative Analysis of Secretome of Human Umbilical Cord- and Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells. Bull Exp Biol Med 166, 535–540 (2019). https://doi.org/10.1007/s10517-019-04388-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-019-04388-1

Key Words

Navigation