Skip to main content
Log in

Autophagy in Hepatocytes during Distant Tumor Growth

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

Structural changes in the liver of CBA mice were studied during the development of experimental hepatocarcinoma-29 inoculated into the hip. A decrease in the volume density of hepatocyte cytoplasm, mitochondria, endoplasmic reticulum, and lipid inclusions and an increase in the volume density of lysosomal structures during tumor growth were observed. All stages of intracellular autophagy were recorded by the method of electron microscopy. These stages included the appearance of autophagosomes, autophagolysosomes, and secondary lysosomes in the hepatocyte cytoplasm. Fragments of cytoplasm, glycogen rosettes, mitochondria, and fragments of endoplasmic reticulum with ribosomes were found in autophagosomes. The obtained data indicate the development of non-selective autophagy in the liver during distant tumor growth in aimed at the maintenance of intracellular homeostasis in hepatocytes and energy and trophic homeostasis of organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bgatova NP, Borodin YI, Makarova VV, Pozhidaeva AA, Rachkovskaya LN, Konenkov VI. Effects of nanosized lithium carbonate particles on intact muscle tissue and tumor growth. Bull. Exp. Biol. Med. 2014;157(1):89-94.

    Article  PubMed  CAS  Google Scholar 

  2. Kaledin VI, Zhukova NA, Nikolin VP, Popova NA, Beliaev MD, Baginskaya NV, Litvinova EA, Tolstikova TG, Lushnikova EL, Semenov DE. Hepatocarcinoma-29, a metastasizing transplantable mouse tumor inducing cachexia. Bull. Exp. Biol. Med. 2010;148(6):903-908.

    Article  Google Scholar 

  3. Konenkov VI, Borodin YuI, Makarova OP, Bgatova NP, Rachkovskaya LN. Effects of lithium carbonate nanosized particles on oxidant-antioxidant status in tumor tissue of hepatocarcinoma-29. Patol. Fiziol. Eksper. Ter. 2015;59(2):57-64. Russian.

  4. Usynin IF, Panin LE. Mechanisms determining phenotypic heterogeneity of hepatocytes. Biochemistry (Moscow). 2008;73(4):367-380.

    Article  CAS  Google Scholar 

  5. Bgatova NP, Makarova OP, Pozhidayeva AA, Borodin YI, Rachkovskaya LN, Konenkov VI. Effects of Lithium Nano-Scaled Particles on Local and Systemic Structural and Functional Organism Transformations Under Tumour Growth. Achievements in the Life Sciences. 2014;8(2):101-111.

    Article  Google Scholar 

  6. Bgatova NP, Shorina GN, Šimek J, Červinkova Z, Holeček M, Shkurupii VA. Structural changes in the liver parenchyma of rats during long-term feeding on diets differing in protein content. Bull. Exp. Biol. 1986;101(5):607-610.

    Article  Google Scholar 

  7. Cui J, Gong Z, Shen HM. The role of autophagy in liver cancer: molecular mechanisms and potential therapeutic targets. Biochim. Biophys. Acta. 2013;1836(1):15-26.

    PubMed  CAS  Google Scholar 

  8. Czaja MJ, Ding WX, Donohue TM Jr, Friedman SL, Kim JS, Komatsu M, Lemasters JJ, Lemoine A, Lin JD, Ou JH, Perlmutter DH, Randall G, Ray RB, Tsung A, Yin XM. Functions of autophagy in normal and diseased liver. Autophagy. 2013;9(8):1131-1158.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ding WX. Role of autophagy in liver physiology and pathophysiology. World J. Biol. Chem. 2010;1(1):3-12.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Flores-Toro JA, Go KL, Leeuwenburgh C, Kim JS. Autophagy in the liver: cell’s cannibalism and beyond. Arch. Pharm. Res. 2016;39(8):1050-1061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Kishton RJ, Rathmell JC. Novel therapeutic targets of tumor metabolism. Cancer J. 2015;21(2):62-69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Komatsu M. Liver autophagy: physiology and pathology. J. Biochem. 2012;152(1):5-15.

    Article  PubMed  CAS  Google Scholar 

  13. Lupinacci RM, Paye F, Coelho FF, Kruger JA, Herman P. Lymphatic drainage of the liver and its implications in the management of colorectal cancer liver metastases. Updates Surg. 2014;66(4):239-245.

    Article  PubMed  Google Scholar 

  14. Mancias JD, Kimmelman AC. Mechanisms of Selective Autophagy in Normal Physiology and Cancer. J. Mol. Biol. 2016; 428(9, Pt A):1659-1680.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Mizushima N. Autophagy: process and function. Genes Dev. 2007;21(22):2861-2873.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. P. Bgatova.

Additional information

Translated from Byulleten’ Eksperimental’noi Biologii i Meditsiny, Vol. 165, No. 3, pp. 368-372, March, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bgatova, N.P., Bakhbaeva, S.A., Taskaeva, Y.S. et al. Autophagy in Hepatocytes during Distant Tumor Growth. Bull Exp Biol Med 165, 390–393 (2018). https://doi.org/10.1007/s10517-018-4177-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4177-8

Key Words

Navigation