Skip to main content

Advertisement

Log in

Endothelial Cells Modulate Differentiation Potential and Mobility of Mesenchymal Stromal Cells

  • Published:
Bulletin of Experimental Biology and Medicine Aims and scope

We studied the effect of endothelial cells on in vitro migration and differentiation potential of multipotent mesenchymal stromal cells. Down-regulation of stemness genes OCT4, SOX2, and chondrogenic differentiation regulator SOX9 gene and upregulation of osteogenesis master-gene RUNX2 in mesenchymal stromal cells were observed in the presence of intact and TNFα-activated endothelial cells, which indicated an increase in commitment of mesenchymal stromal cells.The medium conditioned by endothelial cells stimulated migration activity of mesenchymal stromal cells; migration rate increased significantly in conditioned medium from activated cells in comparison with medium from non-activated cells. It was concluded that the interaction with endothelial cells modulated functional activity of mesenchymal stromal cells; moreover, activated endothelial cells produced more pronounced effects on differentiation potential and migration activity of mesenchymal stromal cells both in direct contact and through paracrine regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antonov AS, Krushinskii AV, Nikolaeva MA, Figel’ KhG, Repin VS. Primary culture of endothelial cells from human umbilical vein: identification and characterization of growing and confluent cultures. Tsitologiya. 1981;23(10):384-386. Russian.

  2. Buravkova LB, Grinakovskaya OS, Andreeva ER, Zhambalova AP, Kozionova MP. Characteristics of human lipoaspirateisolated mesenchymal stromal cells cultivated under lower oxygen tension. Cell and Tissue Biology. 2009;3(1):23-28.

    Article  Google Scholar 

  3. Sokolova IB, Zin’kova NN, Shvedova EV, Kruglyakov PV, Polyntsev DG. Distribution of mesenchymal stem cells in the area of tissue inflammation after transplantation of the cell material via different routes. Bull. Exp. Biol. Med. 2007; 143(1):143-146.

  4. Bidarra SJ, Barrias CC, Barbosa MA, Soares R, Amédée J, Granja PL. Phenotypic and proliferative modulation of human mesenchymal stem cells via crosstalk with endothelial cells. Stem Cell Res. 2011;7(3):186-197.

    Article  PubMed  Google Scholar 

  5. Böhrnsen F, Schliephake H. Supportive angiogenic and osteogenic differentiation of mesenchymal stromal cells and endothelial cells in monolayer and co-cultures. Int. J. Oral Sci. 2016;8(4):223-230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cheng A, Genever PG. SOX9 determines RUNX2 transactivity by directing intracellular degradation. J. Bone Miner. Res. 2010;25(12):2680-2689.

  7. Danese S, Dejana E, Fiocchi C. Immune regulation by microvascular endothelial cells: directing innate and adaptive immunity, coagulation, and inflammation. J. Immunol. 2007;178(10):6017-6022.

    PubMed  CAS  Google Scholar 

  8. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315-317.

  9. Glemžaitė M, Navakauskienė R. Osteogenic differentiation of human amniotic fluid mesenchymal stem cells is determined by epigenetic changes. Stem Cells Int. 2016;2016. ID 6465307.

  10. Leibacher J, Henschler R. Biodistribution, migration and homing of systemically applied mesenchymal stem/stromal cells. Stem Cell Res Ther. 2016;7:7. doi: https://doi.org/10.1186/s13287-015-0271-2.

  11. Lin CH, Lilly B. Endothelial cells direct mesenchymal stem cells toward a smooth muscle cell fate. Stem Cells Dev. 2014;23(21):2581-2590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Marino F, Schembri L, Rasini E, Pinoli M, Scanzano A, Luini A, Congiu T, Cosentino M. Characterization of human leukocyte-HUVEC adhesion: Effect of cell preparation methods. J. Immunol. Methods. 2017;443):55-63.

    Article  PubMed  CAS  Google Scholar 

  13. Nitzsche F, Müller C, Lukomska B, Jolkkonen J, Deten A, Boltze J. Concise review: MSC adhesion cascade — insights into homing and transendothelial migration. Stem Сells. 2017;35(6):1446-1460.

    Article  Google Scholar 

  14. Regulatory Networks in Stem Cells. Rajasekhar VK, Vemuri MC. New York, 2009.

  15. Ringe J, Strassburg S, Neumann K, Endres M, Notter M, Burmester GR, Kaps C, Sittinger M. Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2. J. Cell. Biochem. 2007;101(1):135-146.

    Article  PubMed  CAS  Google Scholar 

  16. Rustad KC, Gurtner GC. Mesenchymal stem cells home to sites of injury and inflammation. Adv Wound Care. (New Rochelle). 2012;1(4):147-152.

  17. Saleh FA, Whyte M, Genever PG. Effects of endothelial cells on human mesenchymal stem cell activity in a three-dimensional in vitro model. Eur. Cell Mater. 2011;22:242-257.

    Article  PubMed  CAS  Google Scholar 

  18. Sohni A, Verfaillie CM. Mesenchymal stem cells migration homing and tracking. Stem Cells Int. 2013;2013. ID 130763. doi: https://doi.org/10.1155/2013/130763.

  19. Stich S, Loch A, Leinhase I, Neumann K, Kaps C, Sittinger M, Ringe J. Human periosteum-derived progenitor cells express distinct chemokine receptors and migrate upon stimulation with CCL2, CCL25, CXCL8, CXCL12, and CXCL13. Eur. J. Cell Biol. 2008;87(6):365-376.

    Article  PubMed  CAS  Google Scholar 

  20. Teo GS, Ankrum JA, Martinelli R, Boetto SE, Simms K, Sciuto TE, Dvorak AM, Karp JM, Carman CV. Mesenchymal stem cells transmigrate between and directly through tumor necrosis factor-α-activated endothelial cells via both leukocyte-like and novel mechanisms. Stem Cells. 2012;30(11):2472-2486.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Tsai CC, Su PF, Huang YF, Yew TL, Hung SC. Oct4 and Nanog directly regulate Dnmt1 to maintain self-renewal and undifferentiated state in mesenchymal stem cells. Mol. Cell. 2012;47(2):169-182.

  22. Via AG, Frizziero A, Oliva F. Biological properties of mesenchymal Stem Cells from different sources. Muscles Ligaments Tendons J;2(3):154-162.

  23. Xue Y, Xing Z, Bolstad AI, Van Dyke TE, Mustafa K. Co-culture of human bone marrow stromal cells with endothelial cells alters gene expression profiles. Int. J. Artif. Organs. 2013;36(9):650-662.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Zhidkova.

Additional information

Translated from Kletochnye Tekhnologii v Biologii i Meditsine, No. 1, pp. 15-19, January, 2018

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhidkova, O.V., Andreeva, E.R. & Buravkova, L.B. Endothelial Cells Modulate Differentiation Potential and Mobility of Mesenchymal Stromal Cells. Bull Exp Biol Med 165, 127–131 (2018). https://doi.org/10.1007/s10517-018-4113-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10517-018-4113-y

Key Words

Navigation