Skip to main content
Log in

TidyBot: personalized robot assistance with large language models

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

For a robot to personalize physical assistance effectively, it must learn user preferences that can be generally reapplied to future scenarios. In this work, we investigate personalization of household cleanup with robots that can tidy up rooms by picking up objects and putting them away. A key challenge is determining the proper place to put each object, as people’s preferences can vary greatly depending on personal taste or cultural background. For instance, one person may prefer storing shirts in the drawer, while another may prefer them on the shelf. We aim to build systems that can learn such preferences from just a handful of examples via prior interactions with a particular person. We show that robots can combine language-based planning and perception with the few-shot summarization capabilities of large language models to infer generalized user preferences that are broadly applicable to future interactions. This approach enables fast adaptation and achieves 91.2% accuracy on unseen objects in our benchmark dataset. We also demonstrate our approach on a real-world mobile manipulator called TidyBot, which successfully puts away 85.0% of objects in real-world test scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdo, N., Stachniss, C., Spinello, L., & Burgard, W. (2015). Robot, organize my shelves! tidying up objects by predicting user preferences. In 2015 IEEE international conference on robotics and automation (ICRA).

  • Batra, D., Chang, A. X., Chernova, S., Davison, A. J., Deng, J., Koltun, V., Levine, S., Malik, J., Mordatch, I., & Mottaghi, R., et al. (2020). Rearrangement: A challenge for embodied ai. arXiv preprint arXiv:2011.01975

  • Brohan, A., Chebotar, Y., Finn, C., Hausman, K., Herzog, A., Ho, D., Ibarz, J., Irpan, A., Jang, E., & Julian, R. (2022). Do as i can, not as i say: Grounding language in robotic affordances. In 6th annual conference on robot learning.

  • Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems, 33, 1877–1901.

    Google Scholar 

  • Chen, W., Hu, S., Talak, R., & Carlone, L. (2022). Leveraging large language models for robot 3d scene understanding. arXiv preprint arXiv:2209.05629

  • Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H.P.d.O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., & Brockman, G., et al. (2021). Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374

  • Chen, B., Xia, F., Ichter, B., Rao, K., Gopalakrishnan, K., Ryoo, M.S., Stone, A., & Kappler, D. (2022). Open-vocabulary queryable scene representations for real world planning. arXiv preprint arXiv:2209.09874

  • Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham, P., Chung, H.W., Sutton, C., & Gehrmann, S., et al. (2022). Palm: Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311

  • Coulter, R. C. (1992). Implementation of the pure pursuit path tracking algorithm. Technical report, Carnegie-Mellon UNIV Pittsburgh PA Robotics INST.

  • Dewi, T., Risma, P., & Oktarina, Y. (2020). Fruit sorting robot based on color and size for an agricultural product packaging system. Bulletin of Electrical Engineering and Informatics, 9(4), 1438–1445.

    Article  Google Scholar 

  • Ehsani, K., Han, W., Herrasti, A., VanderBilt, E., Weihs, L., Kolve, E., Kembhavi, A., & Mottaghi, R. (2021). Manipulathor: A framework for visual object manipulation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.

  • Gan, C., Zhou, S., Schwartz, J., Alter, S., Bhandwaldar, A., Gutfreund, D., Yamins, D. L., DiCarlo, J. J., McDermott, J., & Torralba, A. (2022). The threedworld transport challenge: A visually guided task-and-motion planning benchmark towards physically realistic embodied ai. In 2022 International conference on robotics and automation (ICRA).

  • Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F. J., & Marín-Jiménez, M. J. (2014). Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition, 47(6), 2280–2292.

    Article  Google Scholar 

  • Gu, X., Lin, T.-Y., Kuo, W., & Cui, Y. (2021). Open-vocabulary object detection via vision and language knowledge distillation. In International conference on learning representations.

  • Gupta, M., & Sukhatme, G. S. (2012). Using manipulation primitives for brick sorting in clutter. In 2012 IEEE international conference on robotics and automation.

  • Herde, M., Kottke, D., Calma, A., Bieshaar, M., Deist, S., & Sick, B. (2018). Active sorting: An efficient training of a sorting robot with active learning techniques. In 2018 international joint conference on neural networks (IJCNN).

  • Høeg, S. H., & Tingelstad, L. (2022). More than eleven thousand words: Towards using language models for robotic sorting of unseen objects into arbitrary categories. In Workshop on language and robotics at CoRL 2022.

  • Holmberg, R., & Khatib, O. (2000). Development and control of a holonomic mobile robot for mobile manipulation tasks. The International Journal of Robotics Research, 19(11), 1066–1074.

    Article  MATH  Google Scholar 

  • Huang, W., Abbeel, P., Pathak, D., & Mordatch, I. (2022). Language models as zero-shot planners: Extracting actionable knowledge for embodied agents. arXiv preprint arXiv:2201.07207

  • Huang, E., Jia, Z., & Mason, M. T. (2019). Large-scale multi-object rearrangement. In 2019 international conference on robotics and automation (ICRA).

  • Huang, W., Xia, F., Xiao, T., Chan, H., Liang, J., Florence, P., Zeng, A., Tompson, J., Mordatch, I., & Chebotar, Y., et al. (2022). Inner monologue: Embodied reasoning through planning with language models. arXiv preprint arXiv:2207.05608

  • Kang, M., Kwon, Y., & Yoon, S.-E. (2018). Automated task planning using object arrangement optimization. In 2018 15th international conference on ubiquitous robots (UR), IEEE.

  • Kant, Y., Ramachandran, A., Yenamandra, S., Gilitschenski, I., Batra, D., Szot, A., & Agrawal, H. (2022). Housekeep: Tidying virtual households using commonsense reasoning. arXiv preprint arXiv:2205.10712

  • Kapelyukh, I., & Johns, E. (2022). My house, my rules: Learning tidying preferences with graph neural networks. In Conference on robot learning.

  • Kojima, T., Gu, S.S., Reid, M., Matsuo, Y., & Iwasawa, Y. (2022). Large language models are zero-shot reasoners. arXiv preprint arXiv:2205.11916

  • Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L., Herrasti, A., Gordon, D., Zhu, Y., Gupta, A., & Farhadi, A. (2017). Ai2-thor: An interactive 3d environment for visual ai. arXiv preprint arXiv:1712.05474

  • Kujala, J. V., Lukka, T. J., & Holopainen, H. (2016). Classifying and sorting cluttered piles of unknown objects with robots: A learning approach. In 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS).

  • Li, C., Xia, F., Martín-Martín, R., Lingelbach, M., Srivastava, S., Shen, B., Vainio, K.E., Gokmen, C., Dharan, G., & Jain, T. (2022). igibson 2.0: Object-centric simulation for robot learning of everyday household tasks. In Conference on robot learning.

  • Li, C., Zhang, R., Wong, J., Gokmen, C., Srivastava, S., Martín-Martín, R., Wang, C., Levine, G., Lingelbach, M., & Sun, J. (2022). Behavior-1k: A benchmark for embodied ai with 1000 everyday activities and realistic simulation. In 6th annual conference on robot learning.

  • Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter, B., Florence, P., & Zeng, A. (2022). Code as policies: Language model programs for embodied control. arXiv preprint arXiv:2209.07753

  • Lin, K., Agia, C., Migimatsu, T., Pavone, M., Bohg, J. (2023). Text2motion: From natural language instructions to feasible plans. arXiv preprint arXiv:2303.12153

  • Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692

  • Lukka, T. J., Tossavainen, T., Kujala, J. V., & Raiko, T. (2014). Zenrobotics recycler–robotic sorting using machine learning. In Proceedings of the international conference on sensor-based sorting (SBS).

  • Madaan, A., Zhou, S., Alon, U., Yang, Y., & Neubig, G. (2022). Language models of code are few-shot commonsense learners. arXiv preprint arXiv:2210.07128

  • Mees, O., Borja-Diaz, J., & Burgard, W. (2022). Grounding language with visual affordances over unstructured data. arXiv preprint arXiv:2210.01911

  • Miller, G. A. (1995). Wordnet: A lexical database for english. Communications of the ACM, 38(11), 39–41.

    Article  Google Scholar 

  • Minderer, M., Gritsenko, A., Stone, A., Neumann, M., Weissenborn, D., Dosovitskiy, A., Mahendran, A., Arnab, A., Dehghani, M., & Shen, Z., et al. (2022). Simple open-vocabulary object detection with vision transformers. arXiv preprint arXiv:2205.06230

  • Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber, D., Dohan, D., Lewkowycz, A., Bosma, M., & Luan, D., et al. (2021). Show your work: Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114

  • Pan, Z., Hauser, K. (2021). Decision making in joint push-grasp action space for large-scale object sorting. In 2021 IEEE international conference on robotics and automation (ICRA).

  • Puig, X., Ra, K., Boben, M., Li, J., Wang, T., Fidler, S., & Torralba, A. (2018). Virtualhome: Simulating household activities via programs. In Proceedings of the IEEE conference on computer vision and pattern recognition.

  • Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., & Clark, J. (2021). Learning transferable visual models from natural language supervision. In International conference on machine learning.

  • Raman, S. S., Cohen, V., Rosen, E., Idrees, I., Paulius, D., & Tellex, S. (2022). Planning with large language models via corrective re-prompting. arXiv preprint arXiv:2211.09935

  • Rasch, R., Sprute, D., Pörtner, A., Battermann, S., & König, M. (2019). Tidy up my room: Multi-agent cooperation for service tasks in smart environments. Journal of Ambient Intelligence and Smart Environments, 11(3), 261–275.

    Article  Google Scholar 

  • Reimers, N., & Gurevych, I. (2019). Sentence-bert: Sentence embeddings using siamese bert-networks. In Proceedings of the 2019 Conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (EMNLP-IJCNLP).

  • Ren, A. Z., Govil, B., Yang, T.-Y., Narasimhan, K., & Majumdar, A. (2022). Leveraging language for accelerated learning of tool manipulation. arXiv preprint arXiv:2206.13074

  • Rytting, C., & Wingate, D. (2021). Leveraging the inductive bias of large language models for abstract textual reasoning. Advances in Neural Information Processing Systems, 34, 17111–17122.

    Google Scholar 

  • Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). Distilbert, a distilled version of bert: Smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108

  • Sarch, G., Fang, Z., Harley, A.W., Schydlo, P., Tarr, M.J., Gupta, S., & Fragkiadaki, K. (2022). Tidee: Tidying up novel rooms using visuo-semantic commonsense priors. In European conference on computer vision.

  • Shah, D., Osinski, B., Ichter, B., & Levine, S. (2022). LM-Nav: Robotic navigation with large pre-trained models of language, vision, and action. arXiv preprint arXiv:2207.04429

  • Shridhar, M., Thomason, J., Gordon, D., Bisk, Y., Han, W., Mottaghi, R., Zettlemoyer, L., & Fox, D. (2020). Alfred: A benchmark for interpreting grounded instructions for everyday tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.

  • Shridhar, M., Yuan, X., Côté, M.-A., Bisk, Y., Trischler, A., & Hausknecht, M. J. (2021). Alfworld: Aligning text and embodied environments for interactive learning. In ICLR.

  • Silver, T., Hariprasad, V., Shuttleworth, R. S., Kumar, N., Lozano-Pérez, T., & Kaelbling, L. P. (2022). Pddl planning with pretrained large language models. In NeurIPS 2022 foundation models for decision making workshop.

  • Singh, I., Blukis, V., Mousavian, A., Goyal, A., Xu, D., Tremblay, J., Fox, D., Thomason, J., & Garg, A. (2022). Progprompt: Generating situated robot task plans using large language models. arXiv preprint arXiv:2209.11302

  • Song, H., Haustein, J. A., Yuan, W., Hang, K., Wang, M.Y., Kragic, D., Stork, J. A. (2020). Multi-object rearrangement with monte Carlo tree search: A case study on planar nonprehensile sorting. In 2020 IEEE/RSJ international conference on intelligent robots and systems (IROS).

  • Srivastava, S., Li, C., Lingelbach, M., Martín-Martín, R., Xia, F., Vainio, K. E., Lian, Z., Gokmen, C., Buch, S., & Liu, K. (2022). Behavior: Benchmark for everyday household activities in virtual, interactive, and ecological environments. In Conference on robot learning.

  • Szabo, R., Lie, I. (2012). Automated colored object sorting application for robotic arms. In 2012 10th international symposium on electronics and telecommunications.

  • Szot, A., Clegg, A., Undersander, E., Wijmans, E., Zhao, Y., Turner, J., Maestre, N., Mukadam, M., Chaplot, D. S., Maksymets, O., et al. (2021). Habitat 2.0: Training home assistants to rearrange their habitat. Advances in Neural Information Processing Systems, 34, 251–266.

    Google Scholar 

  • Taniguchi, A., Isobe, S., El Hafi, L., Hagiwara, Y., & Taniguchi, T. (2021). Autonomous planning based on spatial concepts to tidy up home environments with service robots. Advanced Robotics, 35(8), 471–489.

    Article  Google Scholar 

  • Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D., Bosma, M., Zhou, D., & Metzler, D., et al. (2022). Emergent abilities of large language models. arXiv preprint arXiv:2206.07682

  • Wei, J., Wang, X., Schuurmans, D., Bosma, M., Chi, E., Le, Q., & Zhou, D. (2022). Chain of thought prompting elicits reasoning in large language models. arXiv preprint arXiv:2201.11903

  • Weihs, L., Deitke, M., Kembhavi, A., & Mottaghi, R. (2021). Visual room rearrangement. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.

  • Wu, J., Antonova, R., Kan, A., Lepert, M., Zeng, A., Song, S., Bohg, J., Rusinkiewicz, S., & Funkhouser, T. (2023). Tidybot: Personalized robot assistance with large language models. In IEEE/rsj international conference on intelligent robots and systems (IROS).

  • Yan, Z., Crombez, N., Buisson, J., Ruichck, Y., Krajnik, T., & Sun, L. (2021). A quantifiable stratification strategy for tidy-up in service robotics. In 2021 IEEE international conference on advanced robotics and its social impacts (ARSO).

  • Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan, K., & Cao, Y. (2022). React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629

  • Zeng, A., Wong, A., Welker, S., Choromanski, K., Tombari, F., Purohit, A., Ryoo, M., Sindhwani, V., Lee, J., & Vanhoucke, V., et al. (2022). Socratic models: Composing zero-shot multimodal reasoning with language. arXiv preprint arXiv:2204.00598

  • Zeng, A., Song, S., Lee, J., Rodriguez, A., & Funkhouser, T. (2020). Tossingbot: Learning to throw arbitrary objects with residual physics. IEEE Transactions on Robotics, 36(4), 1307–1319.

    Article  Google Scholar 

  • Zeng, A., Song, S., Yu, K.-T., Donlon, E., Hogan, F. R., Bauza, M., Ma, D., Taylor, O., Liu, M., Romo, E., et al. (2022). Robotic pick-and-place of novel objects in clutter with multi-affordance grasping and cross-domain image matching. The International Journal of Robotics Research, 41(7), 690–705.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank William Chong, Kevin Lin, and Jingyun Yang for fruitful technical discussions, and Bob Holmberg for mentorship and support in building up the mobile platforms.

Funding

This work was supported in part by the Princeton School of Engineering, Toyota Research Institute, and the National Science Foundation under CCF-2030859, DGE-1656466, and IIS-2132519.

Author information

Authors and Affiliations

Authors

Contributions

JW, RA, AK, ML, and AZ contributed to system implementation, experiments, or analysis. RA, AZ, SS, JB, SR, and TF supervised the project. All authors contributed to the manuscript.

Corresponding author

Correspondence to Jimmy Wu.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: LLM prompts

Appendix A: LLM prompts

This section contains the full prompts used for all LLM text completion tasks. Each prompt consists of 1–3 in-context examples in gray followed by a test example that we ask the LLM to complete. The portion of the test example that is generated by the LLM is . We use the same in-context examples across all scenarios in both the benchmark and the real-world system. For each scenario, only the final test example is modified.

1.1 A.1 Summarization for receptacle selection

figure q
figure r

1.2 A.2 Receptacle selection

figure s

1.3 A.3 Summarization for primitive selection

figure t

1.4 A.4 Primitive selection

figure u
figure v

1.5 A.5 Category extraction for real-world system

figure w

1.6 A.6 Receptacle selection for real-world system

figure x

1.7 A.7 Primitive selection for real-world system

figure y

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Antonova, R., Kan, A. et al. TidyBot: personalized robot assistance with large language models. Auton Robot 47, 1087–1102 (2023). https://doi.org/10.1007/s10514-023-10139-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-023-10139-z

Keywords

Navigation