Skip to main content
Log in

Recognition, prediction, and planning for assisted teleoperation of freeform tasks

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

The approach of inferring user’s intended task and optimizing low-level robot motions has promise for making robot teleoperation interfaces more intuitive and responsive. But most existing methods assume a finite set of candidate tasks, which limits a robot’s functionality. This paper proposes the notion of freeform tasks that encode an infinite number of possible goals (e.g., desired target positions) within a finite set of types (e.g., reach, orient, pick up). It also presents two technical contributions to help make freeform UIs possible. First, an intent predictor estimates the user’s desired task, and accepts freeform tasks that include both discrete types and continuous parameters. Second, a cooperative motion planner continuously updates the robot’s trajectories to achieve the inferred tasks by repeatedly solving optimal control problems. The planner is designed to respond interactively to changes in the indicated task, avoid collisions in cluttered environments, handle time-varying objective functions, and achieve high-quality motions using a hybrid of numerical and sampling-based techniques. The system is applied to the problem of controlling a 6D robot manipulator using 2D mouse input in the context of two tasks: static target reaching and dynamic trajectory tracking. Simulations suggest that it enables the robot to reach intended targets faster and to track intended trajectories more closely than comparable techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aarno, D., Ekvall, S., & Kragic, D. (2005). Adaptive virtual fixtures for machine-assisted teleoperation tasks. IEEE International Conference on Robotics and Automation (pp. 897–903).

  • Aarno, D., & Kragic, D. (2008). Motion intention recognition in robot assisted applications. Robotics and Autonomous Systems, 56, 692–705.

    Google Scholar 

  • Anderson, S. J., Peters, S. C., Iagnemma, K. D., & Pilutti, T. E. (2009). A unified approach to semi-autonomous control of passenger vehicles in hazard avoidance scenarios. Proceedings of IEEE International Conference on Systems, Man and Cybernetics, (pp. 2032–2037) San Antonio, TX, USA.

  • Asano, T., Sharlin, E., Kitamura, Y., Takashima, K. & Kishino, F. (2005). Predictive interaction using the delphian desktop. Proceedings of the 18th Annual ACM Symposium on User Interface Software and Technology (pp. 133-141).

  • Betts, J. T. (1998). Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 21(2), 193–207.

    Article  MATH  Google Scholar 

  • Blom, H. A. P., & Bar-Shalom, Y. (1988). The interacting multiple model algorithm for systems with markovian switching coefficients. IEEE Transaction on Automatic Control, 33, 780–783.

    Article  MATH  Google Scholar 

  • Bobrow, J., Martin, B., Sohl, G., Wang, E., Park, F., & Kim, J. (2001). Optimal robot motions for physical criteria. Journal of Robotic Systems, 18(12), 785–795.

    Article  MATH  Google Scholar 

  • Burridge, R. R. & Hambuchen, K. A. (2009). Using prediction to enhance remote robot supervision across time delay. IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 5628–5634).

  • Dragan, A., & Srinivasa, S. (2012). Formalizing assistive teleoperation. In Robotics: Science and Systems.

  • Frazzoli, E., Dahleh, M. A., & Feron, E. (2002). Real-time motion planning for agile autonomous vehicles. AIAA Journal of Guidance, Control, and Dynamics, 25(1), 116–129.

    Article  Google Scholar 

  • Gauvain, J.-L., & Lee, C.-H. (1994). Maximum a posteriori estimation for multivariate gaussian mixture observations of markov chains. IEEE Transactions on Speech and Audio Processing, 2(2), 291– 298.

    Google Scholar 

  • Goodrich, M. A. & Olsen, J. D. R. (2003) Seven principles of efficient interaction. Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (pp. 3943–3948).

  • Green, S. A., Billinghurst, M., Chen, X., & Chase, J. G. (2008). Human-robot collaboration: A literature review and augmented reality approach in design. International Journal of Advanced Robotic Systems, 5(1), 1–18.

    Google Scholar 

  • Hauser, K. (2011). On responsiveness, safety, and completeness in real-time motion planning. Autonomous Robots, 32(1), 35–48.

    Article  Google Scholar 

  • Hauser, K., & Ng-Thow-Hing, V. (2010). Fast smoothing of manipulator trajectories using optimal bounded-acceleration shortcuts. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Anchorage, USA

  • Karaman, S., & Frazzoli, E. (2010). Incremental sampling-based algorithms for optimal motion planning. In Robotics: Science and Systems (RSS), Zaragoza, Spain.

  • Kim, C.-J. (1994). Dynamic linear models with markov-switching. Journal of Econometrics, 60, 1–22.

    Article  MathSciNet  MATH  Google Scholar 

  • Kragic, D., Marayong, P., Li, M., Okamura, A. M., & Hager, G. D. (2005). Human-machine collaborative systems for microsurgical applications. The International Journal of Robotics Research, 24(9), 731–741.

    Article  Google Scholar 

  • Lane, D., Peres, S., Sándor, A., & Napier, H. (2005). A process for anticipating and executing icon selection in graphical user interfaces. International Journal of Human-Computer Interaction, 19(2), 241–252.

    Google Scholar 

  • Lank, E., Cheng, Y., Ruiz, J. (2007). Endpoint prediction using motion kinematics. Proceedings of the SIGCHI Conference on Human Factors in Computing System, (pp. 637-646).

  • LaValle, S. M. (2006). Planning algorithms. Cambridge, UK: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Leeper,A., Hsiao, K., Ciocarlie, M., Takayama, L., & Gossow D. (2012). Strategies for human-in-the-loop robotic grasping. Proceedings of Human-Robot Interaction (HRI), (pp. 1–8) Boston, MA.

  • Petti, S., & Fraichard, T. (2005) Safe motion planning in dynamic environments. IEEE International Conference on Intelligent Robots and Systems (IROS), pp. (3726–3731).

  • Schrempf, O., Albrecht, D. & Hanebeck, U. (2007). Tractable probabilistic models for intention recognition based on expert knowledge. Proceedings of the International Conference on Informatics in Control, Automation and Robotics, (pp 1429–1434). San Diego, CA, USA.

  • Shen, J., Ibanez-Guzman, J., Ng, T. C., & Chew, B.-S. (2004). A collaborative-shared control system with safe obstacle avoidance capability. IEEE Conference on Robotics, Automation and Mechatronics, Vol. 1, (pp. 119–123).

  • Yu, W., Alqasemi, R., Dubey, R., & Pernalete, N. (2005). Telemanipulation assistance based on motion intention recognition. IEEE International Conference on Robotics and Automation, (pp. 1121– 1126).

  • Ziebart, B., Dey, A. K., Bagnell, J. A. (2012) Probabilistic pointing target prediction via inverse optimal control. Proceedings of the International Conference on Intelligent User Interfaces.

  • Zollner, R., Rogalla, O., Dillmann, R., & Zollner, M. (2002). Understanding users intention: programming fine manipulation tasks by demonstration. International Conference of Intelligent Robots and Systems, Vol 2, (pp. 1114–1119).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Hauser.

Appendix:

Appendix:

1.1 Gaussian Conditioning

If \(X\) and \(Y\) are jointly normally distributed as follows:

$$\begin{aligned} \left[ \begin{array}{l} X \\ Y \end{array}\right] \sim \mathcal{N }\left( \left[ \begin{array}{l}\mu _x \\ \mu _y\end{array}\right] , \left[ \begin{array}{ll}\Sigma _{x} &{} \Sigma _{xy} \\ \Sigma _{yx} &{} \Sigma _{y} \end{array}\right] \right) , \end{aligned}$$
(21)

then the conditional distribution over \(Y\) given the value of \(X\) is another Gaussian distribution \(\mathcal{N }(\mu _{y|x},\Sigma _{y|x})\) with

$$\begin{aligned} \begin{aligned} \mu _{y|x}&= \mu _y+\Sigma _{yx}\Sigma _{x}^{-1}(x-\mu _x) \\ \Sigma _{y|x}&= \Sigma _{y}-\Sigma _{yx}\Sigma _{x}^{-1}\Sigma _{xy}. \end{aligned} \end{aligned}$$
(22)

This form is in fact equivalent to the ordinary least-squares fit \(y = A x + b + \epsilon \) with \(A = \Sigma _{xy}\Sigma _{x}^{-1},\, b = \mu _y-\Sigma _{yx}\Sigma _{x}^{-1}\mu _x\), and where \(\epsilon \sim \mathcal{N }(0,\Sigma _{y|x})\) is an error term.

1.2 Kalman update

Given a linear observation model \(o = A x + b + \epsilon \) with \(\epsilon \sim \mathcal{N }(0,Q)\), and prior \(x \sim \mathcal{N }(\mu ,\Sigma )\), the posterior \(P(x|o)\) is a Gaussian with mean and covariance

$$\begin{aligned} \begin{aligned} \mu _{x|o}&= \mu -\Sigma A^T C^{-1}(o-A\mu ) \\ \Sigma _{x|o}&= \Sigma -\Sigma A^T C^{-1} A \Sigma \end{aligned} \end{aligned}$$
(23)

where \(C = A \Sigma A^T + Q\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hauser, K. Recognition, prediction, and planning for assisted teleoperation of freeform tasks. Auton Robot 35, 241–254 (2013). https://doi.org/10.1007/s10514-013-9350-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-013-9350-3

Keywords

Navigation