Skip to main content
Log in

Technical stability of solutions of nonlinear differential equations of controlled vertical motion of an elastic body for a given measure

  • Determinate Systems
  • Published:
Automation and Remote Control Aims and scope Submit manuscript

Abstract

Sufficient conditions for the technical stability for a given measure of nonlinear dynamic states of a long elastic flying system for its controlled vertical motion are derived. The influence of changes in sectional area, transversal deformations, and vibrations of flying vehicles are taken into account. The technical stability criteria depend on the main parameters of the control process and lateral load increment due to distortion of the longitudinal axis of the system and aerodynamical forces in vertical flight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Abgaryan, K.A., Stability of Motion on a Finite Interval, in Itogi Nauki i Tekhinki, Obshchaya mekhanika (Advances in Science and Technology. General Mechanics), Moscow: VINITI, 1976, vol. 3, pp. 43–124.

    Google Scholar 

  2. Bairamov, F.D., Obespechenie tekhnicheskoi ustoichivosti upravlyaemykh sistem. Problemy analiticheskoi mekhaniki, ustoichivosti i upravleniya dvizheniem (Ensuring Technical Stability of Control Systems. Problems in Analytical Mechanics, Stability, and Control of Motion), Novosibirsk: Nauka, 1991.

    Google Scholar 

  3. Bublik, B.N., Garashchenko, F.G., and Kirichenko, N.F., Strukturno-parametricheskaya optimizatsiya i ustoichivost’ dinamiki puchkov (Structural Parametric Optimization and Stability of Dynamics of Beams), Kiev: Naukova Dumka, 1985.

    Google Scholar 

  4. Matviychuk, K.S., Conditions for the Technical Stability of Solutions of Autonomous Differential Equations with Discontinuous Control, Diff. Uravn., 2001, vol. 37, no. 9, pp. 1177–1185.

    Google Scholar 

  5. Matviychuk, K.S., Technical Stability of Nonlinear Parametrically Excited Systems with Distributed Parameters, Sib. Mat. Zh., 1999, vol. 40, no. 6, pp. 1289–1301.

    Google Scholar 

  6. Matviychuk, K.S., Technical Stability of Motion of a Panel in a Gas Flow, Zh. Prikl. Mekh. Tekh. Fiz., 1988, no. 6, pp. 93–99.

  7. Matviychuk, K.S., Technical Theory of Parametrically Excited Panels in a Gas Flow, Izv. Akad. Nauk SSSR, MTT, 1990, no.4, pp. 122–131.

  8. Matviychuk, K.S., Technical Stability Properties of the Solutions of the Boundary Value Problem for a Long Rod System Moving in a Liquid, Prikl. Mekh., 1996, vol. 32, no. 7, pp. 84–89.

    Google Scholar 

  9. Sirazetdinov, T.K., Ustoichivost’ sistem s raspredelennymi parametrami (Stability of Distributed-Parameter Systems), Novosibirsk: Nauka, 1987.

    Google Scholar 

  10. Matviychuk, K.S., Conditions for the Technical Stability of Solutions of a Nonlinear Boundary Value Problem Defining Parametrically Excited Processes in a Hilbert Space, Ukr. Mat. Zh., 1999, vol. 51, no. 3, pp. 349–363.

    Google Scholar 

  11. Matviychuk, K.S., Technical Stability for a Measure of the Solutions of Boundary Value Problems for Distributed Processes under Continuous Control, Diff. Uravn., 2002, vol. 38, no. 10, pp. 1278–1285.

    Google Scholar 

  12. Guz’, A.N., Osnovy trekhmernoi teorii ustoichivosti deformiruemykh tel (Elements of the Three-Dimensional Theory of Stability of Deformable Bodies), Kiev: Vishcha Shkola, 1986.

    Google Scholar 

  13. Rumyantsev, V.V., Theory of Motion of Solids with Liquid-Filled Hallows, Prikl. Mat. Mekh., 1966, vol. 30, no. 1, pp. 51–66.

    Google Scholar 

  14. Lukovskii, I.A., Vvedenie v nelineinuyu dinamiku tverdogo tela s polostyami, soderzhashchimi zhidkost (Introduction to Nonlinear Dynamics of Solids with Liquid-Filled Hollows), Kiev: Naukova Dumka,1990.

    Google Scholar 

  15. Sirazetdinov, T.K., Optimizatsiya sistem s raspredelennymi parametrami (Optimization of Distributed-Parameter Systems), Moscow: Nauka, 1997.

    Google Scholar 

  16. Sirazetdinov, T.K., Optimal Control of Elastic Flying Vehicles, Avtom. Telemekh., 1966, no. 7, pp. 5–19.

  17. Sirazetdinov, T.K., Optimal Control Design for Flying Vehicles, Izv. Vuzov, Aviats. Tekh., 1967, no. 4,pp. 30–40.

  18. Kuntsevich, V.M. and Lychak, M.M., Syntez sistem avtomaticheskogo upravleniya s pomoshch’yu funktsii Lyapunova (Design of Automatic Control Systems with Lyapunov Functions), Moscow: Nauka, 1977.

    Google Scholar 

  19. Emel’yanov, S.V. and Korovin, S.K., Novye tipy obratnoi svyazi. Upravlenie pri neopredelennosti (New Feedback Types. Control under Uncertainty), Moscow: Nauka, 1997.

    Google Scholar 

  20. Kolesnikov, K.S., Zhidkostnaya raketa kak ob”ekt regulirovaniya (Liquid-Propellent Rocket as an Object for Control), Moscow: Mashinostroenie, 1969.

    Google Scholar 

  21. Matrosov, V.M., Anapol’skii, L. Yu., and Vasil’ev, S.N., Metod sravneniya v matematicheskoi teorii system (The Congruence Method in Mathematical Systems Theory), Novosibirsk: Nauka, 1980.

    Google Scholar 

  22. Szarski, J., Differential Inequalities, Warshawa: PWN, 1967.

    Google Scholar 

  23. Matviychuk, K.S., Technical Stability of Disconnected Control Systems with a Continual Set of Initial Perturbations, Int. Appl. Mech., 2000, vol. 36, no. 11, pp. 1142–1155.

    Google Scholar 

  24. Matviychuk, K.S., On Technical Stability of Forced Automatic Control Systems with Variable-Structure, Int. Appl. Mech., 2001, vol. 37, no. 3, pp. 393–406.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Avtomatika i Telemekhanika, No. 1, 2005, pp. 13–28.

Original Russian Text Copyright © 2005 by Matviychuk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matviychuk, K.S. Technical stability of solutions of nonlinear differential equations of controlled vertical motion of an elastic body for a given measure. Autom Remote Control 66, 10–23 (2005). https://doi.org/10.1007/s10513-005-0002-8

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10513-005-0002-8

Keywords

Navigation