Skip to main content
Log in

Experimental and computational study of the pyrocarbon and silicon carbide barriers of HTGR fuel particle

  • Published:
Atomic Energy Aims and scope

Abstract

HTGR safety is secured by a system of barriers limiting the emission of fission products from the core into the surrounding environment during normal operation and postulated anticipated accidents. An experimental-computational analysis of two fundamentally important barriers — fuel kernels and their coating, whose function is to contain radionuclides and to protect workers and the environment, is examined. The function of the barriers and the requirements which they must satisfy are examined for HTGR fuel particles. The results of post-reactor studies are analyzed.

Mathematical models and computational codes simulating the behavior of fuel particles are analyzed. Probabilistic-statistical models and the GOLT code are being developed to evaluate the behavior of fuel particles under irradiation. Together with other models, this code is used for comparative test calculations of the behavior of particle fuel under normal irradiation conditions (<1300°C). The first results of such calculations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Chernikov, L. N. Permyakov, S. D. Kurbakov, et al., “Nuclear fuel for HTGR based on microspheres of plutonium oxide,” At. Énerg., 88, No. 1, 35–38 (2000).

    Article  Google Scholar 

  2. R. B. Kotel'nikov, S. N. Bashlykov, A. I. Kashtanov, and T. S. Men'shikova, High Temperature Nuclear Fuel, Atomizdat, Moscow (1978).

    Google Scholar 

  3. Yu. G. Degal'tsev, N. N. Ponomarev-Stepnoi, and V. F. Kuznetsov, Behavior of High Temperature Nuclear Fuel under Irradiation, Énergoatomizdat, Moscow (1987).

    Google Scholar 

  4. A. Judd, Fast Breeder Reactors, Pergamon Press, New York (1981) [Russian translation, Énergoatomizdat, Moscow (1984)].

    Google Scholar 

  5. A. S. Chernikov, Z. A. Shokina, and V. I. Stolyarov, Radiation Behavior of Fuel Particles and Fuel Elements for HTGR Reactors, Review, TsNIIatominform, Moscow (1985).

    Google Scholar 

  6. R. Price, “Properties of silicon carbide for nuclear fuel particle coatings,” Nucl. Technol., 335, 320–336 (1977).

    Google Scholar 

  7. Y. Katoh, N. Nashimoto, S. Kondo, et al., “Microstructural development in cubic silicon carbide during irradiation at elevated temperatures,” J. Nucl. Mater., 351, 228–240 (2006).

    Article  Google Scholar 

  8. J. Parados and I. Scott, “The influence of pyrolytic carbon creep on coated particle fuel performance,” Nucl. App., 3, 488–491 (1967).

    Google Scholar 

  9. J. Kaae, “A mathematical model for calculating stresses in a four-layer carbon-silicon-carbide coated fuel particle,” J. Nucl. Mater., 32, 322–329 (1969).

    Article  Google Scholar 

  10. H. Walther, “On mathematical models for calculating the mechanical behavior of coated fuel particles,” Nucl. Eng. Design, 18, 11–39 (1972).

    Article  Google Scholar 

  11. D. Martin, “A normally permissible method of simplifying, without any loss in accuracy, the Walther model for calculating the mechanical performance of coated fuel particles,” ibid., 30, 73–82 (1974).

    Article  Google Scholar 

  12. K. Verfondern and H. Nabielek, PANAMA. Ein Rechenprogramm zur Vorhersage des Partikelbruchanteils von TRISO-Partikeln unter Storfallbedingungen. Jül-Spez-298 (1985).

  13. W. Covacs, K. Bongartz, and D. Goodin, “High temperature gas cooled reactor fuel pressure vessel performance models,” Nucl. Technol, 68, 344 (1985).

    Google Scholar 

  14. R. Bennett, “Finite element stress analysis for coated particle fuel modeling under normal operating conditions,” ibid., 96, 117–122 (1991).

    Google Scholar 

  15. G. Miller and R. Bennett, “Analytical solution for stresses in TRISO-coated particles,” J. Nucl. Mater., 206, 35–49 (1993).

    Article  Google Scholar 

  16. K. Sawa et al., “Development of coated particle failure model under high burnup irradiation,” J. Nucl. Sci. Technol., 33, No. 9, 712–720 (1996).

    Article  Google Scholar 

  17. D. G. Martin, “Considerations pertaining to the achievement of high burn-ups in HTR fuel,” Nucl. Eng. Design, 213, 241–258 (2002).

    Article  Google Scholar 

  18. M. Phelip, G. Degeneve, F. Michel, et al., “The ATLAS HTR and fuel simulation code objectives, description and first results,” in: Proceedings of Conference on High Temperature Reactors, Beijing, China, September 22–24, 2004, IAEA, Vienna, HTR-2004, pp. 1–10.

    Google Scholar 

  19. G. Miller, D. Petti, D. Varicalle, and J. Maki, “Statistical approach and benchmarking for modeling of multidimension behavior in TRISO-coated fuel particles,” J. Nucl. Mater., 317, 69–82 (2003).

    Article  Google Scholar 

  20. N. N. Ponomarev-Stepnoi, T. A. Sazykina, and N. I. Tikhonov, “Methods for calculating the stress-strain state of HTGR fuel particles and choice of particle structure,” At. Énerg., 56, No. 2, 77–81 (1984).

    Google Scholar 

  21. V. S. Eremeev, E. A. Ivanova, V. N. Mikhailov, et al., “Mathematical model for describing stresses in fuel particles,” ibid., 58, No. 3, 189–190 (1985).

    Google Scholar 

  22. I. Golubev, I. Kadarmetov, and V. Makarov, “Mathematical model and computer code for coated particles performance at normal operating conditions,” in: Proceedings of Conference on High Temperature Reactors, Petten (NL), April 22–24, 2002, IAEA, Vienna, HTR-2002, pp. 1–16.

    Google Scholar 

  23. I. Golubev and I. Kadarmetov, “Current status of development of coated particle performance code GOLT,” in: Proceedings on High Temperature Reactors, Johannesburg, South Africa, October 1–4, 2006, p. B176.

  24. M. Phelip, “European programme on HTR fuel technology,” in: Proceedings of the Second International Topical Meeting on High Temperature Reactor Technology HTR-2004, Beijing, China, September 22–24, 2004, IAEA, Vienna, HTR-2006, pp. 1–9.

    Google Scholar 

  25. M. Phelip, I. Golubev, D. Petti, et al., “The CRP-6 benchmarks on HTGR fuel behavior under normal operation,” in: Proceedings of the Nuclear Fuel and Structural Materials for the Next-Generation Nuclear Reactors, Reno, USA, June 6–8, 2006.

  26. J. Maki, D. Petti, D. Hobbins, et al., NP-MHTGR Fuel Development Program Results, INEEL/EXT-1268 (2002).

  27. P. A. Platonov, Ya. I. Shtrombakh, V. I. Karpukhin, et al., “Effect of radiation on graphite in high-temperature gas-cooled reactors,” Vopr. At. Nauk. Tekh., Ser. At.-Vodorod. Énerget. Tekhnol., No. 6, 77–81 (1984).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Atomnaya Énergiya, Vol. 105, No. 1, pp. 14–25, July, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golubev, I.E., Kurbakov, S.D. & Chernikov, A.S. Experimental and computational study of the pyrocarbon and silicon carbide barriers of HTGR fuel particle. At Energy 105, 18–31 (2008). https://doi.org/10.1007/s10512-008-9061-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10512-008-9061-6

Keywords

Navigation