Skip to main content
Log in

Modelling of nonlinear ion-acoustic wave structures due to Martian ionospheric loss

  • Research
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The ion escape process of the ionosphere of an unmagnetized planet, Mars, gets highly stimulated by the interaction with the solar wind. A mathematical model is constructed to investigate the nonlinear dynamics of ionized particles by studying the propagation dynamics of ion-acoustic waves (IAWs) formed due to the interaction of Martian ionospheric plasma consisting of the positive ion beam (\(O^{+}\)) and negative ions (\(Cl^{-}\)) with the solar wind composed by \(H^{+}\) ions and electrons. The Sagdeev Pseudopotential formalism is deployed to investigate the nonlinear properties of the ion-acoustic waves. Using the phase plane analysis, the unperturbed dynamical systems are examined for solitary as well as other nonlinear waves. The three-dimensional total energy functions are plotted to support the existence of nonlinear and super nonlinear wave structures and the existence region of the solitary waves is explored. A relevant set of plasma parameters for Martian ionospheric plasma is chosen to discuss the analytical solution of the energy equation by using the concept of the Jacobi elliptic function. The perturbed dynamical system is investigated to examine the existence of quasiperiodic and chaotic trajectories. The effects of different plasma parameters on nonlinear wave features are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  • Abdikian, A., Tamang, A., Saha, A.: Electron acoustic supernonlinear waves and their multistability in the framework of the nonlinear Schrodinger equation. Commun. Theor. Phys. 72, 075502 (2020a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Abdikian, A., Saha, A., Alimirzaei, S.: Bifurcation analysis of ionacoustic waves in an adiabatic trapped electron and warm ion plasma. J. Taibah Univ. Sci. 14, 1051–1058 (2020b)

    Article  Google Scholar 

  • Akbari-Moghanjoughi, M.: The pseudoforce approach to fully nonlinear plasma excitations. Phys. Plasmas 24, 082302 (2017)

    Article  ADS  Google Scholar 

  • Ali, R., Saha, A., Chatterjee, P.: Electron acoustic solitary wave solution for the forced KdV equation in superthermal plasmas. Phys. Plasmas 24, 122106 (2017a)

    Article  ADS  Google Scholar 

  • Ali, R., Saha, A., Chatterjee, P.: Dynamics of the positron acoustic waves in electron-positron-ion magnetoplasmas. Indian J. Phys. 91, 689 (2017b)

    Article  ADS  Google Scholar 

  • Archer, P., Ming, D., Sutter, B., Hogancamp, J., Morris, R., Clark, B., et al.: Perchlorate on Mars—overview and implications. In: 9th International Conference on Mars, p. 20190028297 (2019)

    Google Scholar 

  • Bailung, H., Sharma, S.K., Nakamura, Y.: Observation of Peregrine solitons in a multicomponent plasma with negative ions. Phys. Rev. Lett. 107, 255005 (2011)

    Article  ADS  Google Scholar 

  • Clark, B.C., Kounaves, S.P.: Evidence for the distribution of perchlorates on Mars. Int. J. Astrobiol. 15(4), 311 (2016)

    Article  ADS  Google Scholar 

  • Clark, B.C., Van Hart, D.C.: The salts of Mars. Icarus 45, 370–378 (1981)

    Article  ADS  Google Scholar 

  • Das, T.K., Saha, A., Pal, N., Chatterjee, P.: Effect of dust ion collisional frequency on transition of dust ion acoustic waves from quasiperiodic motion to limit cycle oscillation in a magnetized dusty plasma. Phys. Plasmas 24, 073707 (2017a)

    Article  ADS  Google Scholar 

  • Das, T.K., Ali, R., Chatterjee, P.: Effect of dust ion collision on dust ion acoustic waves in the framework of damped Zakharov-Kuznetsov equation in presence of external periodic force. Phys. Plasmas 24, 103703 (2017b)

    Article  ADS  Google Scholar 

  • Deka, M.K., Adhikary, N.C., Misra, A.P., Bailung, H., Nakamura, Y.: Characteristics of ion-acoustic solitary wave in a laboratory dusty plasma under the influence of ion-beam. Phys. Plasmas 19, 103704 (2012)

    Article  ADS  Google Scholar 

  • Dubinov, A., Kolotkov, D., Sazonkin, M.: Nonlinear theory of ionsound waves in a dusty electron-positron-ion plasma. Tech. Phys. 57, 585–593 (2012)

    Article  Google Scholar 

  • Dubinov, A.E., Kolotkov, D.Y.: Above the weak nonlinearity: super-nonlinear waves in astrophysical and laboratory plasmas. Rev. Mod. Plasma Phys. 2, 2 (2018)

    Article  ADS  Google Scholar 

  • El-Labany, S.K., El-Taibany, W.F., Atteya, A.: Bifurcation analysis for ion acoustic waves in a strongly coupled plasma including trapped electrons. Phys. Lett. A 382, 412 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • El-Taibany, W.F., Taha, R.M.: Variable size dust grains with generalized (r,q) electrons in dusty plasma. Contrib. Plasma Phys. 59, e201800072 (2019)

    Article  ADS  Google Scholar 

  • Forward, K.M., Lacks, D.J., Sankaran, R.M.: Particle-size dependent bipolar charging of Martian regolith simulant. Geophys. Res. Lett. 36, L13201 (2009)

    Article  ADS  Google Scholar 

  • Gellert, R., Rieder, R., Brückner, J., Clark, B., Dreibus, G., Klingelhöfer, G., et al.: Alpha particle X-ray spectrometer (APXS): results from Gusev crater and calibration report. J. Geophys. Res. 111, E02S05 (2006)

    Google Scholar 

  • Glavin, D.P., Freissinet, C., Miller, K.E., Eigenbrode, J.L., Brunner, A.E., Buch, A., et al.: Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest aeolian deposit in Gale crater. J. Geophys. Res., Planets 118, 1955–1973 (2013)

    Article  ADS  Google Scholar 

  • Gosling, J.T., Thomsen, M.J.: Specularly reflected ions, shock foot thickness, and shock velocity determinations in space. J. Geophys. Res. 90, 9893–9896 (1985)

    Article  ADS  Google Scholar 

  • Guo, S., Mei, L., Shi, W.: Rogue wave triplets in an ion-beam dusty plasma with superthermal electrons and negative ions. Phys. Lett. A 377, 2118 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Gu, H., Cui, J., Niu, D., Yu, J.: Hydrogen and helium escape on venus via energy transfer from hot oxygen atoms. Mon. Not. R. Astron. Soc. 501, 2394–2402 (2021)

    Article  ADS  Google Scholar 

  • Ghosh, S., Ghosh, K., Sekar Iyengar, A.: Large mach number ion acoustic rarefactive solitary waves for a two electron temperature warm ion plasma. Phys. Plasmas 3, 3939–3946 (1996)

    Article  ADS  Google Scholar 

  • Gresillon, D., Doveil, F.: Normal modes in the ion beam plasma system. Phys. Rev. Lett. 34, 77 (1975)

    Article  ADS  Google Scholar 

  • Hafez, M.: Nonlinear ion acoustic solitary waves with dynamical behaviours in the relativistic plasmas. Astrophys. Space Sci. 365, 78 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  • Hafez, M., Akter, P., Ariffin Abdul Karim, S., et al.: Overtaking collisions of ion acoustic n-shocks in a collisionless plasma with pairion and (, q) distribution function for electrons. Appl. Sci. 10, 6115 (2020a)

    Article  Google Scholar 

  • Hafez, M., Singh, S., Sakthivel, R., Ahmed, S.: Dust ion acoustic multi-shock wave excitations in the weakly relativistic plasmas with nonthermal nonextensive electrons and positrons. AIP Adv. 10, 065234 (2020b)

    Article  ADS  Google Scholar 

  • Hecht, M., Kounaves, S., Quinn, R., West, S., Young, S., Ming, D., et al.: Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site. Science 325(5936), 64–67 (2009)

    Article  ADS  Google Scholar 

  • Hirsch, M.W., Smale, S., Devaney, R.L.: Differential Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier, Washington (2004)

    MATH  Google Scholar 

  • Iqbal, S., Hafez, M., Karim, S.A.A.: Bifurcation analysis with chaotic motion of oblique plane wave for describing a discrete nonlinear electrical transmission line with conformable derivative. Results Phys. 18, 103309 (2020)

    Article  Google Scholar 

  • Kalita, B.C., Das, R., Sarmah, H.K.: Weakly relativistic solitons in a magnetized ion-beam plasma in presence of electron inertia. Phys. Plasmas 18, 012304 (2011)

    Article  ADS  Google Scholar 

  • Kok, J.F., Renno, N.O.: Electrostatics of wind-blown sand. Phys. Rev. Lett. 100, 014501 (2008)

    Article  ADS  Google Scholar 

  • Kounaves, S.P., Chaniotakis, N.A., Chevrier, V.F., Carrier, B.L., Folds, K.E., Hansen, V.M., et al.: Identification of the perchlorate parent salts at the Phoenix Mars landing site and possible implications. Icarus 232, 226–231 (2014)

    Article  ADS  Google Scholar 

  • Krauss, C., Horanyi, M., Robertson, S.: Experimental evidence for electrostatic discharging of dust near the surface of Mars. New J. Phys. 5, 70 (2003)

    Article  ADS  Google Scholar 

  • Leshin, L., Mahaffy, P., Webster, C., Cabane, M., Coll, P., Conrad, P., et al.: Volatile, isotope, and organic analysis of Martian fines with the Mars Curiosity rover. Science 341, 6153 (2013)

    Article  Google Scholar 

  • Lonngren, K.E., Khaze, M., Gabi, E.F., Bulson, J.M.: On grid launched linear and nonlinear ion-acoustic waves. Plasma Phys. 24, 1483 (1982)

    Article  ADS  Google Scholar 

  • Lundin, R., Zakharov, A., Pellinen, R., Borg, H., Hultqvist, B., Pissarenko, N., Dubinin, E.M., Barabash, L.W., Liede, I., Koskinen, H.: First measurements of the ionospheric plasma escape from Mars. Nature 341, 609–611 (1989)

    Article  ADS  Google Scholar 

  • Mandi, L., Saha, A., Chatterjee, P.: Dynamics of ion acoustic waves in Thomas-Fermi plasmas with source term. Adv. Space Res. 64, 427 (2019)

    Article  ADS  Google Scholar 

  • McLennan, S.M., Anderson, R., Bell, J., Bridges, J.C., Calef, F., Campbell, J.L., et al.: Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars. Science 343(6169), 1244734 (2014)

    Article  Google Scholar 

  • Moses, S.L., Coroniti, F.V., Kennel, C.F., Scarf, F.L., Greenstadt, E.W., Kurth, W.S., Lepping, R.P.: High time resolution plasma wave and magnetic field observations of the Jovian bow shock. Geophys. Res. Lett. 12, 183–186 (1985)

    Article  ADS  Google Scholar 

  • Moslem, W.M., Bencheriet, F., Sabry, R., Djebli, M.: Formation and dynamics of electrostatic solitary waves associated with relativistic electron beam. Phys. Plasmas 19, 042105 (2012)

    Article  ADS  Google Scholar 

  • Misra, A.P., Adhikary, N.C.: Large amplitude solitary waves in ion-beam plasmas with charged dust impurities. Phys. Plasmas 18, 122112 (2011)

    Article  ADS  Google Scholar 

  • Nagasawa, T., Nishida, Y.: Nonlinear reflection anf refraction of planar ion-acoustic plasma solitons. Phys. Rev. Lett. 56, 2688 (1986).

    Article  ADS  Google Scholar 

  • Navarro-González, R., Vargas, E., de La Rosa, J., Raga, A.C., McKay, C.P.: Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J. Geophys. Res. 115, E12010 (2010)

    Article  ADS  Google Scholar 

  • Nozaki, K., Bekki, N.: Phys. Rev. Lett. 50, 1226 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  • Pal, B., Poria, S., Sahu, B.: Instability saturation by the oscillating two-stream instability in a weakly relativistic plasma. Phys. Plasmas 22, 042306 (2015)

    Article  ADS  Google Scholar 

  • Patrice, D.T., Mohamadou, A., Kofane, T.C.: Nonlinear dust ion acoustic waves behaviors analysis in warm viscous dusty plasma with trapped ions. Phys. Plasmas 24, 123706 (2017)

    Article  Google Scholar 

  • Popel, S.I., Elsasser, K.: Finite amplitude waves in ion-beam plasma systems. Phys. Lett. A 190, 460 (1994)

    Article  ADS  Google Scholar 

  • Prasad, P., Gowrisankar, A., Saha, A., Banerjee, S.: Dynamical properties and fractal patterns of nonlinear waves in solar wind plasma. Phys. Scr. 95, 065603 (2020)

    Article  ADS  Google Scholar 

  • Prasad, P., Sarkar, S., Saha, A., Mondal, K.: Bifurcation analysis of ion-acoustic superperiodic waves in dense plasmas. Braz. J. Phys. 49, 698–704 (2019)

    Article  ADS  Google Scholar 

  • Qureshi, M.N.S., Pallocchia, G., Bruno, R., Cattaneo, M.B., Formisano, V., Reme, H., Bosqued, J.M., Dandouras, I., Sauvaud, J.A., Kistler, L.M., Meobius, E., Klecker, B., Carlson, C.W., McFadden, J.P., Parks, G.K., McCarthy, M., Korth, A., Lundin, R., Balogh, A., Shah, H.A.: Solar wind particle distribution function fitted via generalized kappa distribution function: cluster observations. AIP Conf. Proc. 679, 489 (2003).

    Article  ADS  Google Scholar 

  • Qureshi, M.N.S., Shi, J.K., Ma, S.J.: Landau damping in space plasmas with generalized (r, q) distribution function. Phys. Plasmas 12, 122902 (2005)

    Article  ADS  Google Scholar 

  • Rapson, C., Grulke, O., Matyash, K., Klinger, T.: The effect of boundaries on the ion acoustic beam-plasma instability in experiment and simulation. Phys. Plasmas 21, 052103 (2014)

    Article  ADS  Google Scholar 

  • Sagdeev, R.: Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys. 4, 23 (1966)

    ADS  Google Scholar 

  • Saha, A., Chatterjee, P., Banerjee, S.: An open problem on supernonlinear waves in a two-component maxwellian plasma. Eur. Phys. J. Plus 135, 801 (2020)

    Article  Google Scholar 

  • Saha, A., Prasad, P., Banerjee, S.: Bifurcation of ion-acoustic superperiodic waves in auroral zone of earth’s magnetosphere. Astrophys. Space Sci. 364, 180 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  • Saha, A., Chatterjee, P.: Electron acoustic blow up solitary waves and periodic waves in an unmagnetized plasma with kappa distributed hot electrons. Astrophys. Space Sci. 353, 163 (2014)

    Article  ADS  Google Scholar 

  • Saha, A., Chatterjee, P.: Solitonic, periodic, quasiperiodic and chaotic structures of dust ion acoustic waves in nonextensive dusty plasmas. Eur. Phys. J. D 69, 203 (2015a)

    Article  ADS  Google Scholar 

  • Saha, A., Chatterjee, P.: Solitonic, periodic and quasiperiodic behaviors of dust ion acoustic waves in superthermal plasmas. Braz. J. Phys. 45, 419 (2015b)

    Article  ADS  Google Scholar 

  • Saha, A., Chatterjee, P.: Qualitative structures of electron-acoustic waves in an unmagnetized plasma with q-nonextensive hot electrons. Eur. Phys. J. Plus 130(11), 222 (2015c)

    Article  Google Scholar 

  • Saini, N.S., Kourakis, I.: Electron beam-plasma interaction and ion-acoustic solitary waves in plasmas with a superthermal electron component. Plasma Phys. Control. Fusion 52, 075009 (2010)

    Article  ADS  Google Scholar 

  • Samanta, U.K., Saha, A., Chatterjee, P.: Bifurcations of dust ion acoustic travelling waves in a magnetized dusty plasma with a qnonextensive electron velocity distribution. Phys. Plasmas 20, 022111 (2013)

    Article  ADS  Google Scholar 

  • Selim, M.M., El-Depsy, A., El-Shamy, E.F.: Bifurcations of nonlinear ion-acoustic travelling waves in a multicomponent magnetoplasma with superthermal electrons. Astrophys. Space Sci. 360, 66 (2015)

    Article  ADS  Google Scholar 

  • Shah, K., Qureshi, M.N.S., Masood, W., Shah, H.: Electron acoustic nonlinear structures in planetary magnetospheres. Phys. Plasmas 25, 042303 (2018)

    Article  ADS  Google Scholar 

  • Steffy, S., Ghosh, S.: Phase portrait analysis of super solitary waves and flat top solutions. Phys. Plasmas 25, 062302 (2018)

    Article  ADS  Google Scholar 

  • Tamang, J., Abdikian, A., Saha, A.: Phase plane analysis of small amplitude electron-acoustic supernonlinear and nonlinear waves in magnetized plasmas. Phys. Scr. 95, 105604 (2020)

    Article  ADS  MATH  Google Scholar 

  • Tamang, J., Saha, A.: Influence of dust-neutral collisional frequency and nonextensivity on dynamic motion of dust-acoustic waves. Waves Random Complex Media 32, 597 (2021)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wang, A., Yan, Y., Jolliff, B.L., McLennan, S.M., Wang, K., Shi, E., Farrell, W.M.: Chlorine release from common chlorides by Martian dust activity. Adv. Earth Space Sci. 125, 1–18 (2019)

    Google Scholar 

  • Williams, G.P.: Chaos Theory Tamed. Joseph Henry, Washington (1997)

    Book  MATH  Google Scholar 

  • Wu, Z., Wang, A., Farrel, W.M., Yan, Y., Wang, K., Houghton, J., Jackson, A.W.: Forming perchlorates on Mars through plasma chemistry during dust events. Earth Planet. Sci. Lett. 504, 94–105 (2018)

    Article  ADS  Google Scholar 

  • Yan, B., Prasad, P., Mukherjee, S., Saha, A., Banerjee, S.: Dynamical complexity and multistability in a novel lunar wake plasma system. Complexity 2020 (2020)

  • Yi, L., Bai, E-W., Lonngren, K.E.: Ion acoustic soliton excitation using a modulated high-frequency sinusoidal wave. Phys. Plasmas 4, 2436 (1997)

    Article  ADS  Google Scholar 

  • Zhang, T.L., Baumjohann, W., Delva, M., Auster, H.-U., Balogh, A., Russell, C.T., Barabash, S., Balikhin, M., Berghofer, G., Biernat, H., Lammer, H., Lichtenegger, H., Magnes, W., Nakamura, R., Penz, T., Schwingenschuh, K., Vörös, Z., Zambelli, W., Fornacon, K.-H., Glassmeier, K.-H., Richter, I., Carr, C., Kudela, K., Shi, J., Zhao, H., Motschmann, U., Lebreton, J.-P.: Magnetic field investigation of the venus plasma environment: expected new results from venus express. Planet. Space Sci. 54, 1336–1343 (2006)

    Article  ADS  Google Scholar 

  • Zaheer, S., Murtaza, G., Shah, H.A.: Some electrostatic modes based on non-Maxwellian distribution functions. Phys. Plasmas 11, 2246 (2004)

    Article  ADS  Google Scholar 

  • Zheng, D.J., Yeh, W.J., Symko, O.G.: Period doubling in a perturbed sine-Gordon system, a long Josephson junction. Phys. Lett. A 140, 225 (1989)

    Article  ADS  Google Scholar 

Download references

Funding

Debaditya Kolay and Dr. Debjit Dutta are grateful to the Council of Scientific and Industrial Research, Department of Science and Technology, Govt. of India, for funding this research (CSIR Project Number – 03(1471)/19/EMR-II).

Author information

Authors and Affiliations

Authors

Contributions

First and second author have equally contributed in the said work. The third author has shared his views to improve the quality of this work.

Corresponding author

Correspondence to Debjit Dutta.

Ethics declarations

Ethical Approval

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolay, D., Dutta, D. & Saha, A. Modelling of nonlinear ion-acoustic wave structures due to Martian ionospheric loss. Astrophys Space Sci 368, 4 (2023). https://doi.org/10.1007/s10509-022-04161-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-022-04161-3

Keywords

Navigation