Skip to main content
Log in

Exploring the effect of various plasma parameters on whistler mode growth rates in the Jovian magnetosphere

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In 1979, after plasma envelope exploration, Voyager 1 and 2 revealed that Jovian magnetosphere consists of an unusual mixture of ions like hydrogen, sulphur, oxygen etc., in similar proportions. The present study observed that the waves in Jovian magnetosphere propagate in whistler-mode, with some similarities to whistler-mode auroral hiss in the Earth’s magnetosphere. The dispersion relation has been deduced and calculated in detail for oblique propagating waves in presence of parallel AC electric field for bi-Maxwellian distribution function. Magnetic field model for different values of latitude at radial distance \(17 R_{J}\) has been reported. By using the method of characteristic solution, relativistic growth rate has been calculated. Data provided by spacecrafts like Pioneer 10 and 11, Voyager 1 and 2, while exploring the magnetosphere of Jupiter, has been used to plot graphs of variation of growth rate for different values of various plasma parameters like temperature anisotropy, angle of wave propagation, AC frequency etc. The effect on growth rate by these plasma parameters is shown by graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ahirwar, G., Varma, P., Tiwari, M.S.: Electromagnetic ion cyclotron instability in the presence of a parallel electric field with general loss-cone distribution function—particle aspect analysis. Ann. Geophys. 24(7), 1919–1930 (2006)

    Article  ADS  Google Scholar 

  • Akalin, F., Gurnett, D.A., Averkamp, T.F., Persoon, A.M., Santolik, O., Kurth, W.S., Hospodarsky, G.B.: First whistler observed in the magnetosphere of Saturn. Geophys. Res. Lett. 33, L20107 (2006)

    Article  ADS  Google Scholar 

  • Bagenal, F.: Empirical model of the Io plasma torus: Voyager measurements. J. Geophys. Res. 99, 11043–11062 (1994)

    Article  ADS  Google Scholar 

  • Bagenal, F., Adriani, A., Allegrini, F., Bolton, S.J., Bonfond, B., Bunce, E.J., Connerney, J.E.P., Cowley, S.W.H., Ebert, R.W., Gladstone, G.R., Hansen, C.J., Kurth, W.S., Levin, S.M., Mauk, B.H., McComas, D.J., Paranicas, C.P., Santos-Costa, D., Thorne, R.M., Valek, P., Waite, J.H., Zarka, P.: Magnetospheric science objectives of the Juno mission. Space Sci. Rev. 213(1–4), 219–287 (2017)

    Article  ADS  Google Scholar 

  • Brice, N.M.: Energetic protons in Jupiter’s radiation belts. In: Proceedings of the Workshop on Jupiter’s Radiation Environment, p. 283. JPL, Pasadena (1972). JPL Tech. Memo. 33-543

    Google Scholar 

  • Burke, B.F., Franklin, K.L.: Observations of a variable radio source associated with the planet Jupiter. J. Geophys. Res. 60, 213–217 (1955)

    Article  ADS  Google Scholar 

  • Carr, T.D., Gulkis, S.: The magnetosphere of Jupiter. Annu. Rev. Astron. Astrophys. 7, 577 (1969)

    Article  ADS  Google Scholar 

  • Clarke, J.T., Hudson, M.K., Yung, Y.L.: The excitation of the far ultraviolet electro glow emissions on Uranus, Saturn, and Jupiter. J. Geophys. Res. 92(A13), 15139–15147 (1987)

    Article  ADS  Google Scholar 

  • Dory, R.A., Guest, G.E., Harris, E.G.: Unstable electrostatic plasma waves propagating perpendicular to a magnetic field. Phys. Rev. Lett. 14, 131 (1965)

    Article  ADS  Google Scholar 

  • Gurnett, D.A., Shaw, R.R., Anderson, R.R., Kurth, W.S.: Whistlers observed by Voyager I: detection of lightning on Jupiter. Geophys. Res. Lett. 6, 511 (1979a)

    Article  ADS  Google Scholar 

  • Gurnett, D.A., Kurth, W.S., Scarf, F.L.: Plasma wave observations near Jupiter: initial results from Voyager 2. Science 206(4421), 987 (1979b)

    Article  ADS  Google Scholar 

  • Gurnett, I.A., Scarf, F.L., Kuri, W.S., Shaw, H.R.R., Poynter, R.L.: Determination of Jupiter’s electron density profile from plasma wave observations. J. Geophys. Res. 86, 8199 (1981)

    Article  ADS  Google Scholar 

  • Gurnett, D.A., Kurth, W.S., Roux, A., Bolton, S.J., Kennel, C.F.: Galileo plasma wave observations in the Io plasma torus and near Io. Science 274, 391 (1996)

    Article  ADS  Google Scholar 

  • Gurnett, D.A., et al.: Radio and plasma wave observations at Saturn from Cassini’s approach and first orbit. Science 307, 1255 (2005)

    Article  ADS  Google Scholar 

  • Kennel, C.F.: Stably trapped proton limits for Jupiter. In: Beck, A.J. (ed.) Proceedings of the Jupiter Radiation Belt Workshop, p. 347. JPL, Pasadena (1972). JPL Tech. Memo 33-543

    Google Scholar 

  • Kumari, J., Pandey, R.S.: Study of VLF wave with relativistic effect in Saturn magnetosphere in the presence of parallel A.C. electric field. Adv. Space Res. 63(7), 2279–2289 (2018)

    Article  ADS  Google Scholar 

  • Kumari, J., Kaur, R., Pandey, R.S.: Effect of hot injections on electromagnetic ion-cyclotron waves in inner magnetosphere of Saturn. Astrophys. Space Sci. 363, 33 (2018)

    Article  ADS  Google Scholar 

  • Kurth, W.S., Barbosa, D.D., Gurnett, D.A., Scarf, F.L.: Electrostatic waves in the Jovian magnetosphere. Geophys. Res. Lett. 7(1), 57 (1980)

    Article  ADS  Google Scholar 

  • Kurth, W.S., Strayer, B.D., Gurnett, D.A., Scarf, F.L.: A summary of whistlers observed by Voyager 1 at Jupiter. Icarus 61(3), 497–507 (1985)

    Article  ADS  Google Scholar 

  • Maurice, S., Blanc, M., Prangé, R., Sittler, E.C. Jr.: The magnetic field-aligned polarization electric field and its effects on particle distribution in the magnetospheres of Jupiter and Saturn. Planet. Space Sci. 45(11), 1449–1465 (1997)

    Article  ADS  Google Scholar 

  • Menietti, J.D., Santolik, O., Rymer, A.M., Hospodarsky, G.B., Persoon, A.M., Gurnett, D.A., Coates, A.J., Young, D.T.: Analysis of plasma waves observed within local plasma injections seen in Saturn’s magnetosphere. J. Geophys. Res. 113, A05213 (2008a)

    Article  ADS  Google Scholar 

  • Menietti, J.D., Santolik, O., Rymer, A.M., Hospodarsky, G.B., Gurnett, D.A., Coates, A.J.: Analysis of plasma waves observed in the inner Saturn magnetosphere. Ann. Geophys. 26, 2631–2644 (2008b)

    Article  ADS  Google Scholar 

  • Pandey, R.S., Kaur, R.: Oblique electromagnetic electron cyclotron waves for kappa distribution with A.C. field in planetary magnetosphere. Adv. Space Res. 56, 714–724 (2015)

    Article  ADS  Google Scholar 

  • Podesta, J.J.: Landau damping in relativistic plasmas with power-law distributions and applications to solar wind electrons. Phys. Plasmas 15, 122902 (2008)

    Article  ADS  Google Scholar 

  • Sazhin, S.S.: Oblique whistler mode growth and damping in a hot anisotropic plasma. Planet. Space Sci. 36, 663–667 (1988)

    Article  ADS  Google Scholar 

  • Scarf, F.L., Gurnett, D.A., Kurth, W.S.: Jupiter plasma wave observations: an initial Voyager 1 overview. Science 204, 991 (1979)

    Article  ADS  Google Scholar 

  • Shklyar, D., Matsumoto, H.: Oblique whistler-mode waves in the inhomogeneous magnetospheric plasma: resonant interactions with energetic charged particles. Surv. Geophys. 30, 55–104 (2009)

    Article  ADS  Google Scholar 

  • Smith, B.A., Soderblom, L.A., Johnson, T.V., Ingersoll, A.P., Collins, S.A., Shoemaker, E.M., Hunt, G.E., Masursky, H., Carr, M.H., Davies, M.E., Cook, A.F. II, Boyce, J., Danielson, G.E., Owen, T., Sagan, C., Beebe, R.F., Veverka, J., Strom, R.G., Mccauley, J.F., Morrison, D., Briggs, G.A., Suomi, V.E.: The Jupiter system through the eyes of Voyager 1. Science 204, 951 (1979)

    Article  ADS  Google Scholar 

  • Stix, T.H.: Waves in Plasmas. Springer, New York (1992)

    Google Scholar 

  • Stone, R.G., Pedersen, B.M., Harvey, C.C., et al.: Ulysses radio and plasma wave observations in the Jupiter environment. Science 257, 1524 (1992)

    Article  ADS  Google Scholar 

  • Thomsen, M.F., Reisenfeld, D.B., Delapp, D.M., Tokar, R.L., Young, D.T., Crary, F.J., Sittler, E.C., McGraw, M.A., Williams, J.D.: Survey of ion plasma parameters in Saturn’s magnetosphere. J. Geophys. Res. 115, A10220 (2010)

    Article  ADS  Google Scholar 

  • Thorne, R.M., Coroniti, F.V.: A self-consistent model for Jupiter’s radiation belts. In: Proceedings of the Workshop on Jupiter’s Radiation Environment, p. 363 (1972). JPL Tech. Memo. 33-543

    Google Scholar 

  • Tokar, R.L., Gurnett, D.A., Bagenal, F.: The proton concentration in the vicinity of the Io plasma torus. J. Geophys. Res. 87, 10395 (1982a)

    Article  ADS  Google Scholar 

  • Tokar, R.L., Gurnett, D.A., Bagenal, F., Shaw, R.R.: Light ion concentrations in Jupiter’s inner magnetosphere. J. Geophys. Res. 87, 2241 (1982b)

    Article  ADS  Google Scholar 

  • Warwick, J.W.: Particles and fields near Jupiter. NASA CR-1685 (1970)

Download references

Acknowledgement

The authors are grateful to the Chairman, Indian Space Research Organization (ISRO), Director and members of PLANEX program, ISRO, for the financial support. We are thankful to Dr. Ashok K. Chauhan (Founder President, Amity University), Dr. Atul Chauhan (President, Amity University) and Dr. Balvinder Shukla (Vice Chancellor, Amity University) for their immense encouragement. We also express our gratitude to the reviewers for their expert comments for the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Pandey.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, S., Pandey, R.S. & Jeyaseelan, C. Exploring the effect of various plasma parameters on whistler mode growth rates in the Jovian magnetosphere. Astrophys Space Sci 364, 133 (2019). https://doi.org/10.1007/s10509-019-3623-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-019-3623-z

Keywords

Navigation