Skip to main content
Log in

Modeling of the lower ionospheric response and VLF signal modulation during a total solar eclipse using ionospheric chemistry and LWPC

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The variation in the solar Extreme Ultraviolet (EUV) radiation flux by any measure is the most dominant natural source to produce perturbations or modulations in the ionospheric chemical and plasma properties. A solar eclipse, though a very rare phenomenon, is similarly bound to produce a significant short time effect on the local ionospheric properties. The influence of the ionizing solar flux reduction during a solar eclipse on the lower ionosphere or, more precisely, the D-region, can be studied with the observation of Very Low Frequency (VLF) radio wave signal modulation. The interpretation of such an effect on VLF signals requires a knowledge of the D-region ion chemistry, which is not well studied till date. Dominant parameters which govern the ion chemistry, such as the recombination coefficients, are poorly known. The occurrence of events such as a solar eclipse provides us with an excellent opportunity to investigate the accuracy of our knowledge of the chemical condition in this part of Earth’s atmosphere and the properties which control the ionospheric stability under such disturbances. In this paper, using existing knowledge of the lower ionospheric chemical and physical properties we carry out an interpretation of the effects obtained during the total solar eclipse of 22 of July 2009 on the VLF signal. Data obtained from a week long campaign conducted by the Indian Centre for Space Physics (ICSP) over the Indian subcontinent has been used for this purpose. Both positive and negative amplitude changes during the eclipse were observed along various receiver locations. In this paper, data for a propagation path between a Indian Navy VLF transmitter named VTX3 and a pair of receivers in India are used. We start from the observed solar flux during the eclipse and calculate the ionization during the whole time span over most of the influenced region in a range of height. We incorporate a D-region ion-chemistry model to find the equilibrium ion density over the region and employ the LWPC code to find the VLF signal amplitude. To tackle the uncertainty in the values of the recombination coefficients we explore a range of values in the chemical evolution model. We achieve two goals by this exercise: First, we have been able to reproduce the trends, if not the exact signal variation, of the VLF signal modulations during a solar eclipse at two different receiving stations with sufficient accuracy purely from theoretical modeling, and second our knowledge of some of the D-region ion-chemistry parameters is now improved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aleksandrov, N.L., Anokhin, E.M.: Low-energy electron attachment and detachment in vibrationally excited oxygen. J. Phys. D, Appl. Phys. 42, 225210 (2009). doi:10.1088/0022-3727/42/22/225210

    Article  ADS  Google Scholar 

  • Aleksandrov, N.L., Anokhin E.M.: Electron detachment from O-2 ions in oxygen: the effect of vibrational excitation and the effect of electric field. J. Phys. B, At. Mol. Opt. Phys. 44, 115202 (2011). doi:10.1088/0953-4075/44/11/115202

    Article  ADS  Google Scholar 

  • Appleton, E.V.: A note on the “sluggishness” of the ionosphere. J. Geophys. Res. 3(5), 282–284 (1953)

    Google Scholar 

  • Bailey, S.M.: Response of the Upper Atmosphere to Variations in the Solar Soft X-ray Irradiance, Dissertation. University of Colorado, Boulder (1995)

    Google Scholar 

  • Bracewell, R.N.: Theory of formation of an ionospheric layer below E layer based on eclipse and solar flare effects at 16 kc/sec. J. Atmos. Terr. Phys. 2, 226–235 (1952)

    Article  ADS  Google Scholar 

  • Bohme, D.K.: Experimental studies of positive ion chemistry with flow-tube mass spectrometry: birth, evolution, and achievements in the 20th century. Int. J. Mass Spectrom. 200, 97–136 (2000)

    Article  ADS  Google Scholar 

  • Buckmaster, H.A., Hansen, C.H.: 26 February 1979 total solar eclipse induced LF (60 kHz) phase retardation. J. Atmos. Terr. Phys. 48, 393–397 (1986)

    Article  ADS  Google Scholar 

  • Budden, K.G.: The Wave-guide Mode Theory of Wave Propagation. Logos Press, London (1961)

    Google Scholar 

  • Chakrabarti, S.K., Sasmal, S., Pal, S., Mondal, S.K.: Results of VLF Campaigns in Summer, Winter and During Solar Eclipse in Indian Subcontinent and Beyond. AIP Conf. Proc, p. 1286. AIP, New York (2010)

    Google Scholar 

  • Chakrabarti, S.K., Pal, S., Sasmal, S., et al.: VLF Observational Results of Total Eclipse of 22nd July, 2009 by ICSP Team. IEEE Con. Publication, New York (2011)

    Book  Google Scholar 

  • Chakrabarti, S.K., Mondal, S.K., Sasmal, S., et al.: VLF signals in summer and winter in the Indian sub-continent using multi-station campaigns Indian. J. Phys. 86(5), 323–334 (2012)

    Google Scholar 

  • Chamberlain, J.W.: Theory of Planetary Atmospheres: An Introduction to Their Physics and Chemistry. Academic, San Diego (1978)

    Google Scholar 

  • Chamberlain, J.W., Hunten, D.M.: Theory of Planetary Atmospheres: An Introduction to Their Physics and Chemistry, 2nd edn. International Geophysics Series, vol. 36, p. 481. Academic Press Inc., Florida (1987)

    Google Scholar 

  • Chamberlin, P.C., Woods, T.N., Eparvier, F.G.: Flare irradiance spectral model (FISM): daily component algorithms and results. Space Weather 5, 07005 (2007). doi:10.1029/2007SW000316

    Article  ADS  Google Scholar 

  • Chapman, S.: The absorption and dissociative or ionizing effect of monochromatic radiation of an atmosphere on a rotating Earth. Proc. Phys. Soc. 43, 26–45 (1931)

    Article  ADS  MATH  Google Scholar 

  • Clilverd, M.A., Rodger, C.J., Thomson, N.R., et al.: Total solar eclipse effects on VLF signals: observations and modeling. Radio Sci. 36(4), 773 (2001)

    Article  ADS  Google Scholar 

  • Ferguson: In: Laboratory Measurements of D-region Ion-molecule Reactions. Astrophysics and Space Science Library, vol. 25, pp. 188–197 (1971)

    Google Scholar 

  • Ferguson, J.A.: Computer programs for assessment of long-wavelength radio communications. Version 2.0. Technical document 3030, Space and Naval Warfare Systems Center, San Diego (1998)

  • Florescu-Mitchell, A.I., Mitchell, J.B.A.: Dissociative recombination. Phys. Rep. 430(5–6), 277–374 (2006)

    Article  ADS  Google Scholar 

  • Glukhov, V., Pasko, V., Inan, U.: Relaxation of transient lower ionospheric disturbances caused by lightning-whistler-induced electron precipitation. J. Geophys. Res. 97, 16,951–16,979 (1992)

    ADS  Google Scholar 

  • Haldoupis, C., Mika, A., Sergey, S.: Modeling the relaxation of early VLF perturbations associated with transient luminous events. J. Geophys. Res. 114, A00E04 (2009). doi:10.1029/2009JA014313

    Article  Google Scholar 

  • Hedin, A.E.: Extension of the MSIS Thermosphere Model into the middle and lower atmosphere. Geophys. Res. Lett. 96, 1159–1172 (1991)

    Article  Google Scholar 

  • Kelley, M.C.: The Earths Ionosphere, Plasma Physics and Electrodynamics, 2nd edn. Academic Press, San Diego (2009). Chap. 2.2

    Google Scholar 

  • Lehtinen, N.G., Inan, U.S.: Possible persistent ionization caused by giant blue jets. Geophys. Res. Lett. 34, L08804 (2007). doi:10.1029/2006GL029051

    Article  ADS  Google Scholar 

  • Lilensten, J., Blelly, P.-L.: Du Soleil à la Terre: Aéronomie et M’etéorologie de L’Espace. Presses Univ. de Grenoble, Grenoble (1999)

    Google Scholar 

  • Lynn, K.J.W.: The total solar eclipse of 23 October 1976, observed at VLF. J. Atmos. Terr. Phys. 43, 1309–1316 (1981)

    Article  ADS  Google Scholar 

  • McGowan, S.: Ion–ion recombination coefficient: II. Measurement in oxygen nitrogen mixture. Can. J. Phys. 45(2), 439–448 (2011). doi:10.1139/p67-039

    Article  ADS  Google Scholar 

  • McNeil, W.J., Dressler, R.A., Murad, E.: Impact of a major meteor storm on Earth’s ionosphere: a modeling study. J. Geophys. Res. 106, 10,447–10,466 (2001)

    Article  ADS  Google Scholar 

  • Mechtly, E.A., Sechrist, C.F., Smith, L.G.: Electron loss coefficients for the D-region of the ionosphere from rocket measurements during the eclipses of March 1970 and November 1966. J. Atmos. Terr. Phys. 34, 641–646 (1972)

    Article  ADS  Google Scholar 

  • Mecwan, M.J., Philips, L.F.: Chemistry of the Atmosphere. Edward Arnold Ltd., London (1975)

    Google Scholar 

  • Mendes da Costa, A., Rizzo Piazza, L., Leme, P., Lower, N.M.: Ionosphere effect observed during the 30 June 1992 total solar eclipse. J. Atmos. Terr. Phys. 57, 13–17 (1995)

    Article  ADS  Google Scholar 

  • Milligan, R.O., Chamberlin, P.C., Hudson, H.S., Thomas, N.W., Mathioudakis, M., Fletcher, L., Kowalski, A.F., Keenan, F.P.: Observation of enhanced EUV continua during an X-class solar flare using SDO/EVE. Astrophys. J. 748, L14 (2012)

    Article  ADS  Google Scholar 

  • Mitra, A.P.: The D-layer of the ionosphere. J. Geophys. Res. 56(3), 373–402 (1951)

    Article  ADS  Google Scholar 

  • Mitra, A.P., Jones, R.E.: Recombination in the lower ionosphere. J. Geophys. Res. 59(3), 323–328 (1954)

    Article  Google Scholar 

  • Mitra, A.P.: Recombination in the Ionosphere Advance in Upper Atmospheric Research, pp. 57–87. Ed Landmark, London (1963)

    Google Scholar 

  • Mitra, A.P.: A review of D-region processes in non-polar latitudes. J. Atmos. Terr. Phys. 30(6), 1065–1114 (1968)

    ADS  Google Scholar 

  • Mitra, A.P.: D region in disturbed condition, including flares and energetic particles. J. Atmos. Terr. Phys. 37, 895 (1975)

    Article  ADS  Google Scholar 

  • Mitra, A.P.: Chemistry of middle atmospheric ionization-a review. J. Atmos. Terr. Phys. 43(8), 737–752 (1981). ISSN 0021-9169

    Article  ADS  Google Scholar 

  • Möllmann, K.P., Vollmer, M.: Measurements and predictions of the illuminance during a solar eclipse. Eur. J. Phys. 27, 1299–1314 (2006)

    Article  Google Scholar 

  • Ohshio, M., Maeda, R., Sakagami, H.: J. Radio Res. Lab. 13, 245 (1966)

    Google Scholar 

  • Ohya, H., Tsuchiya, F., Nakata, H., Shiokawa, K., Miyoshi, Y., Yamashita, K., Takahashi, Y.: Reflection height of daytime tweek atmospherics during the solar eclipse of 22 July 2009. J. Geophys. Res. (2012). doi:10.1029/2012JA018151

    Google Scholar 

  • Pal, S., Chakrabarti, S.K., Mondal, S.K.: Modeling of sub-ionospheric VLF signal perturbations associated with total solar eclipse, 2009 Indian subcontinent. Adv. Space Res. 50, 196–204 (2012)

    Article  ADS  Google Scholar 

  • Palit, S., Basak, T., Pal, S., Chakrabarti, S.K.: Modeling of very low frequency (VLF) radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry. Atmos. Chem. Phys. 13, 9159–9168 (2013). doi:10.5194/acp-13-9159-2013

    Article  ADS  Google Scholar 

  • Palit, S., Basak, T., Pal, S., Chakrabarti, S.K.: Theoretical study of lower ionospheric response to solar flares: sluggishness of D-region and peak time delay. Astrophys. Space Sci. 355, 2190 (2014). doi:10.1007/s1050901421906

    Google Scholar 

  • Pasko, V.P., Inan, U.S.: Recovery signatures of lightning-associated VLF perturbations as a measure of the lower ionosphere. J. Geophys. Res. 99(A9), 17,523–17,537 (1994)

    Article  ADS  Google Scholar 

  • Pasko, V.P., Inan, U.S., Bell, T.F., Tararenko, Y.N.: Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J. Geophys. Res. 102, 4529–4561 (1997)

    Article  ADS  Google Scholar 

  • Phelps, A.V.: Laboratory studies of electron attachment and detachment processes of aeronomic interest. Can. J. Chem. 47, 1783 (1969)

    Article  Google Scholar 

  • Rawer, K., Bilitza, D., Ramakrishnan, S.: Goals and status of the international reference ionosphere. Rev. Geophys. 16, 177–181 (1978)

    Article  ADS  Google Scholar 

  • Rees, M.H.: Physics and Chemistry of the Upper Atmosphere. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  • Reich, P.J.: Ionospheric response to solar flares using an improved version of SAMI2. Thesis. Air force institute of technology, Ohio (2008)

  • Rodger, C.J., Molchanov, O.A., Thomson, N.R.: Relaxation of transient ionization in the lower ionosphere. J. Geophys. Res. Space Phys. 103(A4), 6969–6975 (1998)

    Article  ADS  Google Scholar 

  • Rowe, J.N., Mitra, A.P., Ferraro, A.J., Lee, H.S.: An experimental and theoretical study of the D-region—II. A semi-empirical model for mid-latitude D-region. J. Atmos. Sol.-Terr. Phys. 36, 755–785 (1974)

    Article  ADS  Google Scholar 

  • Rowe, B.R., Mitchell, J.B.A., Canosa, A.: Dissociative Recombination: Theory, Experiment, and Application. NATO ASI Series B: Physics, vol. 313, pp. 135–143. Plenum Press, New York (1993)

    Google Scholar 

  • Ryding, M.J.: Experimental Studies of Cluster Ions Containing Water, Ammonia, Pyridine and Bisulphate: Thesis. University of Gothenburg, Sweden (2011)

    Google Scholar 

  • Schmitter, E.D.: Remote sensing planetary waves in the midlatitude mesosphere using low frequency transmitter signals. Ann. Geophys. 29, 1287–1293 (2011). doi:10.5194/angeo-29-1287-2011

    Article  ADS  Google Scholar 

  • Schunk, R.W., Nagy, A.F.: Ionospheres of the terrestrial planets. Rev. Geophys. 18, 813–851 (1980)

    Article  ADS  Google Scholar 

  • Schunk, R.W., Nagy, A.F.: Ionospheres: Physics, Plasma Physics, and Chemistry. Cambridge Univ. Press, New York (2000)

    Book  Google Scholar 

  • Sengupta, A., Goel, G.K., Mathur, B.S.: Effect of the 16 February 1980 solar eclipse on VLF propagation. J. Atmos. Terr. Phys. 42, 907 (1980)

    Article  ADS  Google Scholar 

  • Sheehan, C.H.: Dissociative recombination of \(N_{2}^{+} \), \(O_{2}^{+}\), and \(\mathit{NO}^{+}\): rate coefficients for ground state and vibrationally excited ions. J. Geophys. Res. 109, A03302 (2004). doi:10.1029/2003JA010132

    Article  ADS  Google Scholar 

  • Singh, A.K., Singh, R., Veenadharic, B., Singh, A.K.: Response of low latitude D-region ionosphere to the total solar eclipse of 22 July 2009 deduced from ELF/VLF analysis. Adv. Space Res. 50(10), 1352–1361 (2012)

    Article  ADS  Google Scholar 

  • Solomon, S.C., Qian, L.: Solar extreme-ultraviolet irradiance for general circulation models. J. Geophys. Res. 110(A10), 10,306 (2005)

    Article  Google Scholar 

  • Thomson, N.R., Clilverd, M.A., McRae, W.M.: Nighttime ionospheric D region parameters from VLF phase and amplitude. J. Geophys. Res. 112(A7), A07304 (2007). doi:10.1029/2007JA012271

    ADS  Google Scholar 

  • Torr, M.R., Torr, D.G., Ong, R.A., Hinteregger, H.E.: Geophys. Res. Lett. 6, 771 (1979)

    Article  ADS  Google Scholar 

  • Torr, M.R., Torr, D.G.: Ionization frequency for solar cycle 21: revised. J. Geophys. Res. 90, 6675 (1985)

    Article  ADS  Google Scholar 

  • Tsurutani, B.T., Judge, D.L., Guarnieri, F.L., Gangopadhyay, P., Jones, A.R., Nuttall, J., Zambon, G.A., Didkovsky, L., Mannucci, A.J., Iijima, B., Meier, R.R., Immel, T.J., Woods, T.N., Prasad, S., Floyd, L., Huba, J., Solomon, S.C., Straus, P., Viereck, R.: The October 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects: comparison to other Halloween events and the Bastille day event. Geophys. Res. Lett. 32, L03S09 (2005). doi:10.1029/2004GL021475

    Article  Google Scholar 

  • Turunen, E., Matveinen, H., Ranta, H.: Sodankyla Ion Ccemistry(SIC) model Sodankyla Geophysical Observatory. Report No. 49. Sodankyla, Finland (1992)

  • Ulwick, J.C.: Eclipse rocket measurements of charged of particle concentrations. J. Atmos. Terr. Phys. 34, 659–665 (1972)

    Article  ADS  Google Scholar 

  • Wait, J.R., Spies, K.P.: Characteristics of the Earth-Ionosphere waveguide for VLF radio waves. NBS Tech Note. U.S. 300 (1964)

  • Woods, T.N., Rottman, G.J.: Solar ultraviolet variability over the time periods of aeronomic interest. In: Atmospheres in the Solar System: Comparative Aeronomy. Geophysical Monogram, vol. 130 (2002). doi:10.1029/130GM14. AGU

    Google Scholar 

  • Yonezawa, T.: Theory of formation of the ionosphere. Space Sci. Rev. 5, 3–56 (1966)

    Article  ADS  Google Scholar 

  • Zhang, S.R., Oliver, W.L., Fukao, S., Otsuka, Y.: A study of the forenoon ionospheric F2 layer behavior over the middle and upper atmospheric radar. J. Geophys. Res. 105, 15,823–15,833 (2000)

    Article  ADS  Google Scholar 

  • Zigman, V., Grubor, D., Sulic, D.: D-region electron density evaluated from VLF amplitude time delay during X-ray solar flares. J. Atmos. Terr. Phys. 69, 775–792 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Suman Chakraborty and Sourav Palit acknowledge a grant from MoES for financial support. All the data are copyrighted by the Indian Centre for Space Physics, Kolkata. These may not be made public without permission of the institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Palit, S., Ray, S. et al. Modeling of the lower ionospheric response and VLF signal modulation during a total solar eclipse using ionospheric chemistry and LWPC. Astrophys Space Sci 361, 72 (2016). https://doi.org/10.1007/s10509-016-2660-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-016-2660-0

Keywords

Navigation