Skip to main content

Advertisement

Log in

Impact assessment of environmental disturbances triggering aquaculture land suitability mapping using AHP and MCDA techniques

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

The examination is to emphasize the coastal dynamics and aquaculture site exploration through multi-criteria decision analysis (MCDA) with analytical hierarchy process (AHP) methods in parts of the Indian Sundarbans. The aim of this examination is to ecological disturbances and potential aquaculture land identification by applying satellite Landsat datasets and other certain datasets. Saltwater intrusion because of flood inundation and anthropogenic actions were triggering factors for deforestation, salinity increase, and shoreline change; therefore, diagraming the environmental problems was also significant. Flood-inundated lands are calculated through Google Earth Engine (GEE) platform. Index-based mapping was applied for environmental degradation throughout the study periods. Around 12 certain criteria are applied for the examination of potential fishery site selection. In this process, the area is characterized by different suitable sites for aquaculture land development. The model output designates the place and magnitude for the expansion of this region in different suitability measures viz., very high suitable 0.16% (1.91 km2), high suitable 20.98% (244.59 km2), moderate suitable 54.94% (640.43 km2), low suitable 12.43% (144.83 km2), very low suitable 0.12% (1.35 km2), and not suitable 11.37% (132.53 km2).Remote sensing (RS) and GIS applications are applied for the aquaculture land identification based on selected criteria. These outcomes help to generate employment, creative application of the region, and informally fluctuated and economically retrograde people of this location. The analysis helps organizers to design plans to connect maximum fish biomass and to originate community assistance from inland open waters in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data will be supplied upon request from corresponding author.

Code availability

Not applicable

References

  • Agarwal PK (2007) Climate change: implications for Indian agriculture. Jalvigyan Sameeksha 22:37–46

    Google Scholar 

  • Akber MA, Islam MA, Ahmed M, Rahman MM, Rahman MR (2017) Changes of shrimp farming in southwest coastal Bangladesh. Aquac Int 25(5):1883–1899. https://doi.org/10.1007/s10499-017-0159-5

    Article  Google Scholar 

  • Akıncı H, Özalp AY, Turgut B (2013) Agricultural land use suitability analysis using GIS and AHP technique. Comput Electron Agric 97:71–82. https://doi.org/10.1016/j.compag.2013.07.006

    Article  Google Scholar 

  • Atkinson SC, Jupiter SD, Adams VM, Ingram JC, Narayan S, Klein CJ, Possingham HP (2016) Prioritising mangrove ecosystem services results in spatially variable management priorities. PloS One 11(3):e0151992–e0151992. https://doi.org/10.1371/journal.pone.0151992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandira PNA, Mahamud MA, Samat N, Tan ML, Chan NW (2021) GIS-based multi-criteria evaluation for potential inland aquaculture site selection in the George Town Conurbation, Malaysia. Land 10(11):1174. https://doi.org/10.3390/land10111174

    Article  Google Scholar 

  • Begam MM, Chowdhury R, Sutradhar T, Mukherjee C, Chatterjee K, Basak SK, Ray K (2020) Forecasting mangrove ecosystem degradation utilizing quantifiable eco-physiological resilience-a study from Indian Sundarbans. Sci Rep 10(1):6683. https://doi.org/10.1038/s41598-020-63586-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj P, Singh O (2019) Climatological characteristics of Bay of Bengal tropical cyclones: 1972–2017. Theor Appl Climatol 139(1–2):615–629. https://doi.org/10.1007/s00704-019-02989-4

    Article  Google Scholar 

  • Blumenfeld S, Lu C, Christophersen T, Coates D (2009) Water, wetlands and forests. a review of ecological, economic and policy linkages. In: Secretariat of the Convention on Biological Diversity and Secretariat of the Ramsar Convention on Wetlands, vol 47. Montreal and Gland. CBD Technical Series, pp 1–38

    Google Scholar 

  • Brandon K (2014) Ecosystem services from tropical forests: review of current science, vol 380. Center for Global Development Working Paper

    Google Scholar 

  • Bunting P, Lucas R (2006) The delineation of tree crowns in Australian mixed species forests using hyperspectral compact airborne spectrographic imager (CASI) data. Remote Sens Environ 101(2):230–248

    Article  Google Scholar 

  • Chakrabarti PP, Ghosh A, Mohapatra BC, Barik NK, Das A, Kumar K, Mondal SC, Majhi D, Mistry A, Jayasankar P (2017) Alternate livelihood development for ‘Aila’affected tribal people through aquaculture in Bali Island of the Sunderban, West Bengal, India. Indian J Fish 64(Special Issue):14–21

    Google Scholar 

  • Chakraborty SK (1996, 1995) Aquaculture potential of mangrove ecosystem of Sunderbans, West Bengal, India. In: Proceedings of the Seminar on Fisheries-A Multibillion Dollar Industry, Aug 17-19, 1995. Aquaculture Foundation of India & The Fisheries Technocrats Forum, Madras, pp 72–83

  • Chen C-H, Sheen Y-N, Wang H-Y (2016) Case analysis of catastrophic underground pipeline gas explosion in Taiwan. Eng Fail Anal 65:39–47

    Article  CAS  Google Scholar 

  • Chopra K, Kapuria P, Kumar P (2009) Biodiversity land use change and human well being: a study of aquaculture in the Indian Sundarbans. OUP Catalogue

    Google Scholar 

  • Cortes G, Mendoza A, Munoz D (1996) Toxicity evaluation using bioassays in rural developing district 063 Hidalgo, Mexico. Environ Toxicol Water Qual 11(2):137–143. https://doi.org/10.1002/(sici)1098-2256(1996)11:2%3c137::aid-tox9%3e3.0.co;2-a

    Article  CAS  Google Scholar 

  • Das P, Vamsi KS, Zhenke Z (2020) Decadal variation of the land surface temperatures (LST) and urban heat island (UHI) over Kolkata City projected using MODIS and ERA-interim datasets. Aerosol Sci Eng 4(3):200–209

    Article  Google Scholar 

  • DasGupta R, Hashimoto S, Okuro T, Basu M (2019) Scenario-based land change modelling in the Indian Sundarban delta: an exploratory analysis of plausible alternative regional futures. Sustain Sci 14:221–240

    Article  Google Scholar 

  • Datta D, Deb S (2012) Analysis of coastal land use/land cover changes in the Indian Sunderbans using remotely sensed data. Geo-Spat Inf Sci 15(4):241–250. https://doi.org/10.1080/10095020.2012.714104

    Article  Google Scholar 

  • Dubey SK, Trivedi RK, Chand BK (2021) Culture possibilities of certain brackishwater species at freshwater: a climate change adaptation strategy for salinity intrusion prone areas of Indian Sundarban Delta. Aquac Stud 22(2). https://doi.org/10.4194/aquast657

  • Dutta S, Chakraborty K, Hazra S (2017) Ecosystem structure and trophic dynamics of an exploited ecosystem of Bay of Bengal, Sundarban Estuary, India. Fish Sci 83:145–159

    Article  CAS  Google Scholar 

  • Dutta S, Maiti S, Garai S, Abrar F, Jha SK, Bhakat M, Mandal S, Kadian KS (2020) Analyzing adaptation strategies to climate change followed by the farming community of the Indian Sunderbans using analytical hierarchy process. J Coastal Conserv 24:1–14

    Article  Google Scholar 

  • Ehteram M, Salih SQ, Yaseen ZM (2020) Efficiency evaluation of reverse osmosis desalination plant using hybridized multilayer perceptron with particle swarm optimization. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-08023-9

  • Elhag M (2016) Evaluation of different soil salinity mapping using remote sensing techniques in arid ecosystems, Saudi Arabia. J Sensors 2016:1–8. https://doi.org/10.1155/2016/7596175

    Article  Google Scholar 

  • Elmetwalli AH, Mazrou YSA, Tyler AN, Hunter PD, Elsherbiny O, Yaseen ZM, Elsayed S (2022) Assessing the efficiency of remote sensing and machine learning algorithms to quantify wheat characteristics in the Nile Delta Region of Egypt. Agriculture (Switzerland). https://doi.org/10.3390/agriculture12030332

  • Feizizadeh B, Jankowski P, Blaschke T (2014) A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis. Comput Geosci 64:81–95. https://doi.org/10.1016/j.cageo.2013.11.009

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghobadi M, Nasri M, Ahmadipari M (2021) Land suitability assessment (LSA) for aquaculture site selection via an integrated GIS-DANP multi-criteria method; a case study of lorestan province, Iran. Aquaculture 530:735776

    Article  Google Scholar 

  • Ghute BB, Shaikh MB, Halder B (2023) Impact assessment of natural and anthropogenic activities using remote sensing and GIS techniques in the Upper Purna River basin, Maharashtra, India. Model Earth Syst Environ 9(2):1507–1522

    Article  Google Scholar 

  • Giri C, Muhlhausen J (2008) Mangrove forest distributions and dynamics in Madagascar (1975-2005). Sensors (Basel, Switzerland) 8(4):2104–2117. https://doi.org/10.3390/s8042104

    Article  PubMed  Google Scholar 

  • Giri S, Samanta S, Mondal PP, Basu O, Khorat S, Chanda A, Hazra S (2021) A geospatial assessment of growth pattern of aquaculture in the Indian Sundarbans Biosphere Reserve. Environ Dev Sustain 24(3):4203–4225. https://doi.org/10.1007/s10668-021-01612-9

    Article  Google Scholar 

  • Goodchild M (1996) Terry Coppock. Geographical. Inf Syst 10(1):7–15. https://doi.org/10.1080/026937996138179

    Article  Google Scholar 

  • Guha S, Govil H, Dey A, Gill N (2018) Analytical study of land surface temperature with NDVI and NDBI using Landsat 8 OLI and TIRS data in Florence and Naples city, Italy. Eur J Remote Sens 51(1):667–678

    Article  Google Scholar 

  • Gupta K, Mukhopadhyay A, Giri S, Chanda A, Datta Majumdar S, Samanta S, Mitra D, Samal RN, Pattnaik AK, Hazra S (2018) An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX 5:1129–1139. https://doi.org/10.1016/j.mex.2018.09.011

    Article  PubMed  PubMed Central  Google Scholar 

  • Halder B (2023) Mapping and monitoring land dynamics using geospatial techniques on Pathar Pratima Block, South 24 Parganas, India. In: Water, Land, and Forest Susceptibility and Sustainability. Elsevier, pp 299–324

  • Hammami S, Zouhri L, Souissi D, Souei A, Zghibi A, Marzougui A, Dlala M (2019) Application of the GIS based multi-criteria decision analysis and analytical hierarchy process (AHP) in the flood susceptibility mapping (Tunisia). Arab J Geosci 12(21):1–16

    Article  Google Scholar 

  • Hoq ME (2007) An analysis of fisheries exploitation and management practices in Sundarbans mangrove ecosystem, Bangladesh. Ocean Coast Manag 50(5–6):411–427. https://doi.org/10.1016/j.ocecoaman.2006.11.001

    Article  Google Scholar 

  • Hussain N, Islam MN (2020) Hot spot (G i∗) model for forest vulnerability assessment: a remote sensing-based geo-statistical investigation of the Sundarbans mangrove forest, Bangladesh. Model Earth Syst Environ 6(4):2141–2151

    Article  Google Scholar 

  • Immanuel G, Citarasu T, Sivaram V, Michael Babu M, Palavesam A (2007) Delivery of HUFA, probionts and biomedicine through bioencapsulated Artemia as a means to enhance the growth and survival and reduce the pathogenesity in shrimp Penaeus monodon postlarvae. Aquac Int 15:137–152

    Article  CAS  Google Scholar 

  • Kamal M, Phinn S, Johansen K (2015) Object-based approach for multi-scale mangrove composition mapping using multi-resolution image datasets. Remote Sens 7(4):4753–4783

    Article  Google Scholar 

  • Kowalski, K. J., McDaniel, R. S., Olek, J. (2010). Identification of laboratory technique to optimize Superpave HMA surface friction characteristics.

    Book  Google Scholar 

  • Kumar P, Thirunavukkarasu AR, Subburaj R, Thiagarajan G (2015) Concept of stress and its mitigation in aquaculture. In: Perumal SART, Pachiappan P (eds) Advances in Marine and Brackishwater Aquaculture. Springer, New Delhi, pp 95–100

  • Kumaran M, Ghoshal TK, De D, Biswas G, Raja RA, Anand PS, Panigrahi A, Vijayan KK (2020) Aquaculture-based production systems for the livelihood security of coastal farm families in the risk-prone agro-ecosystem of India: an appraisal. Aquac Int 28:805–814

    Article  Google Scholar 

  • Li Q, Zhang T, Yu Y (2011) Using cloud computing to process intensive floating car data for urban traffic surveillance. Int J Geogr Inf Sci 25(8):1303–1322. https://doi.org/10.1080/13658816.2011.577746

    Article  Google Scholar 

  • Longdill PC, Healy TR, Black KP (2008) An integrated GIS approach for sustainable aquaculture management area site selection. Ocean Coast Manag 51(8–9):612–624

    Article  Google Scholar 

  • Manna S, Raychaudhuri B (2020) Retrieval of leaf area index and stress conditions for Sundarban mangroves using Sentinel-2 data. Int J Remote Sens 41(3):1019–1039

    Article  Google Scholar 

  • Minoo CM, Ngugi CC, Oyoo-Okoth E, Muthumbi A, Sigana D, Mulwa R, Chemoiwa EJ (2016) Monitoring the effects of aquaculture effluents on benthic macroinvertebrate populations and functional feeding responses in a tropical highland headwater stream (Kenya). Aquat Ecosyst Health Manag 19(4):431–440. https://doi.org/10.1080/14634988.2016.1258896

    Article  Google Scholar 

  • Nandi S, Ghosh M, Kundu A, Dutta D, Baksi M (2015) Shoreline shifting and its prediction using remote sensing and GIS techniques: a case study of Sagar Island, West Bengal (India). J Coast Conserv 20(1):61–80. https://doi.org/10.1007/s11852-015-0418-4

    Article  Google Scholar 

  • Nayak AK, Kumar P, Pant D, Mohanty RK (2018) Land suitability modelling for enhancing fishery resource development in Central Himalayas (India) using GIS and multi-criteria evaluation approach. Aquac Eng 83:120–129. https://doi.org/10.1016/j.aquaeng.2018.10.003

    Article  Google Scholar 

  • Naylor RL, Goldburg RJ, Primavera JH, Kautsky N, Beveridge MCM, Clay J, Folke C, Lubchenco J, Mooney H, Troell M (2000) Effect of aquaculture on world fish supplies. Nature 405(6790):1017–1024. https://doi.org/10.1038/35016500

    Article  CAS  PubMed  Google Scholar 

  • Nejad MF, Zoratipour A (2019) Assessment of LST and NDMI indices using MODIS and Landsat images in Karun riparian forest. J Forest Sci 65(1):27–32

    Article  Google Scholar 

  • Nsangou D, Kpoumié A, Mfonka Z, Ngouh AN, Fossi DH, Jourdan C, Mbele HZ, Mouncherou OF, Vandervaere J-P, Ngoupayou JRN (2022) Urban flood susceptibility modelling using AHP and GIS approach: case of the Mfoundi watershed at Yaoundé in the South-Cameroon plateau. Sci Afr 15:e01043

    Google Scholar 

  • Omar NQ, Sanusi SAM, Hussin WMW, Samat N, Mohammed KS (2014) Markov-CA model using analytical hierarchy process and multiregression technique. IOP Conf Ser: Earth Environ Sci 20(1):12008

    Article  Google Scholar 

  • Pathan AI, Girish Agnihotri P, Said S, Patel D (2022) AHP and TOPSIS based flood risk assessment-a case study of the Navsari City, Gujarat, India. Environ Monit Assess 194(7):1–37

    Article  Google Scholar 

  • Pereira LS, Allen RG, Smith M, Raes D (2015) Crop evapotranspiration estimation with FAO56: past and future. Agric Water Manag 147:4–20. https://doi.org/10.1016/j.agwat.2014.07.031

    Article  Google Scholar 

  • Putiamini S, Mulyani M, Patria MP, Soesilo TEB, Karsidi A (2022) Social vulnerability of coastal fish farming community to tidal (Rob) flooding: a case study from Indramayu, Indonesia. J Coast Conserv 26(2):7

    Article  Google Scholar 

  • Rahman S, Rahman H, Shahid S, Khan RU, Jahan N, Ahmed ZU, Khanum R, Ahmed MF, Mohsenipour M (2017) The impact of cyclone Aila on the Sundarban forest ecosystem. Int J Ecol Dev 32(1):87–97

    Google Scholar 

  • Raveneau, J., Burrough, P.A. (1988). (1986) Principles of geographical information systems for land ressources assessment. Oxford, Oxford University Press, Cahiers de Géographie Du Québec, 32(85), 76. https://doi.org/10.7202/021932ar

    Book  Google Scholar 

  • Roy SD (2013) Research note: impact of fish farming on land relations: evidence from a village study in West Bengal. Indian J Agric Econ 68(2):222–239

    Google Scholar 

  • Saaty TL (1977a) A scaling method for priorities in hierarchical structures. J Math Psychology 15(3):234–281. https://doi.org/10.1016/0022-2496(77)90033-5

    Article  Google Scholar 

  • Saaty TL (2005) Theory and applications of the analytic network process: decision making with benefits, opportunities, costs, and risks. RWS publications

    Google Scholar 

  • Saaty TL (2006) The analytic network process–dependence and feedback in decision-making. In: Business Applications and Computational Intelligence. IGI Global, pp 360–387. https://doi.org/10.4018/978-1-59140-702-7.ch018

    Chapter  Google Scholar 

  • Sahana M, Ahmed R, Sajjad H (2016) Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in Sundarban Biosphere Reserve, India. Model Earth Syst Environ 2(2). https://doi.org/10.1007/s40808-016-0135-5

  • Shava E, Gunhidzirai C (2017) Fish farming as an innovative strategy for promoting food security in drought risk regions of Zimbabwe. Jàmbá: J Disaster Risk Studies 9(1):1–10

    Article  Google Scholar 

  • Shell EW (1991) Husbandry of animals on land and in water: similarities and differences. J Anim Sci 69(10):4176–4182

    Article  CAS  PubMed  Google Scholar 

  • Snyder J, Boss E, Weatherbee R, Thomas AC, Brady D, Newell C (2017) Oyster aquaculture site selection using Landsat 8-derived sea surface temperature, turbidity, and chlorophyll a. Front Mar Sci 4. https://doi.org/10.3389/fmars.2017.00190

  • Sobrino JA, Oltra-Carrió R, Sòria G, Jiménez-Muñoz JC, Franch B, Hidalgo V, Mattar C, Julien Y, Cuenca J, Romaguera M, Gómez JA, De Miguel E, Bianchi R, Paganini M (2012) Evaluation of the surface urban heat island effect in the city of Madrid by thermal remote sensing. Int J Remote Sens 34(9–10):3177–3192. https://doi.org/10.1080/01431161.2012.716548

    Article  Google Scholar 

  • Tienwong K, Dasananda S, Navanugraha C (2009) Integration of land evaluation and the analytical hierarchical process method for energy crops in Kanchanaburi, Thailand. ScienceAsia 35(2):170. https://doi.org/10.2306/scienceasia1513-1874.2009.35.170

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ 8(2):127–150

    Article  Google Scholar 

  • Wang W, Xie Y, Ren L, Zhu X, Chang R, Yin Q (2018) Detection of data injection attack in industrial control system using long short term memory recurrent neural network. In: 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp 2710–2715

    Chapter  Google Scholar 

  • Wardlow B, Egbert S, Kastens J (2007) Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens Environ 108(3):290–310. https://doi.org/10.1016/j.rse.2006.11.021

    Article  Google Scholar 

  • Whiteside TG, Bartolo RE (2015) Mapping aquatic vegetation in a tropical wetland using high spatial resolution multispectral satellite imagery. Remote Sens 7(9):11664–11694

    Article  Google Scholar 

  • Woodruff JD, Irish JL, Camargo SJ (2013) Coastal flooding by tropical cyclones and sea-level rise. Nature 504(7478):44–52. https://doi.org/10.1038/nature12855

    Article  CAS  PubMed  Google Scholar 

  • Zhao H, Li Y, Chen X, Wang H, Yao N, Liu F (2021) Monitoring monthly soil moisture conditions in China with temperature vegetation dryness indexes based on an enhanced vegetation index and normalized difference vegetation index. Theor Appl Climatol 143(1):159–176

    Article  Google Scholar 

  • Zhou Y, Cui Z, Lin K, Sheng S, Chen H, Guo S, Xu C-Y (2022) Short-term flood probability density forecasting using a conceptual hydrological model with machine learning techniques. J Hydrology 604:127255. https://doi.org/10.1016/j.jhydrol.2021.127255

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Vidyasagar University for this research opportunity and truly thankful to the local government body for the field survey and data collection.

Author information

Authors and Affiliations

Authors

Contributions

Bijay Halder: conceptualization, data curation, resources, formal analysis, methodology, investigation, validation, software, visualization, writing—original draft, review and editing draft preparation. Jatisankar Bandyopadhyay: supervision, investigation, project administration, visualization, writing—original draft, review and editing draft preparation. Sutanuka Sandhyaki: conceptualization, data curation, resources, formal analysis, software, visualization, writing—original draft, review and editing draft preparation.

Corresponding author

Correspondence to Bijay Halder.

Ethics declarations

Ethics approval

The manuscript is conducted within the ethical manner advised by the targeted journal.

Consent to participate

Not applicable

Consent for publication

The research is scientifically consented to be published.

Conflict of interest

The authors declare no competing interests.

Additional information

Handling editor: Brian Austin

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, B., Bandyopadhyay, J. & Sandhyaki, S. Impact assessment of environmental disturbances triggering aquaculture land suitability mapping using AHP and MCDA techniques. Aquacult Int 32, 2039–2075 (2024). https://doi.org/10.1007/s10499-023-01257-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-023-01257-7

Keywords

Navigation