Skip to main content

Advertisement

Log in

Dissolution of Carbonate Sediments Under Rising pCO2 and Ocean Acidification: Observations from Devil’s Hole, Bermuda

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

Rising atmospheric pCO2 and ocean acidification originating from human activities could result in increased dissolution of metastable carbonate minerals in shallow-water marine sediments. In the present study, in situ dissolution of carbonate sedimentary particles in Devil’s Hole, Bermuda, was observed during summer when thermally driven density stratification restricted mixing between the bottom water and the surface mixed layer and microbial decomposition of organic matter in the subthermocline layer produced pCO2 levels similar to or higher than those levels anticipated by the end of the 21st century. Trends in both seawater chemistry and the composition of sediments in Devil’s Hole indicate that Mg-calcite minerals are subject to selective dissolution under conditions of elevated pCO2. The derived rates of dissolution based on observed changes in excess alkalinity and estimates of vertical eddy diffusion ranged from 0.2 mmol to 0.8 mmol CaCO3 m−2 h−1. On a yearly basis, this range corresponds to 175–701 g CaCO3 m−2 year−1; the latter rate is close to 50% of the estimate of the current average global coral reef calcification rate of about 1,500 g CaCO3 m−2 year−1. Considering a reduction in marine calcification of 40% by the year 2100, or 90% by 2300, as a result of surface ocean acidification, the combination of high rates of carbonate dissolution and reduced rates of calcification implies that coral reefs and other carbonate sediment environments within the 21st and following centuries could be subject to a net loss in carbonate material as a result of increasing pCO2 arising from burning of fossil fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agegian CR (1985) The biogeochemical ecology of Porolithon gardineri (Foslie). Ph.D. dissertation, University of Hawaii, Honolulu, p 178

  • Alexandersson ET (1976) Actual and anticipated petrographic effects of carbonate undersaturation in shallow seawater. Nature 262:653–657

    Article  Google Scholar 

  • Alexandersson ET (1979) Marine maceration of skeletal carbonates in the Skagerrak, North Sea. Sedimentology 26:845–852

    Article  Google Scholar 

  • Aller RC (1982) Carbonate dissolution in nearshore terrigenous muds: the role of physical and biological reworking. J Geol 90:79–95

    Google Scholar 

  • Andersen AT, Føyn L (1969) In: Lange R (ed) Chemical oceanography, Universitetsførlaget, Oslo, pp 129–130

  • Andersson AJ, Mackenzie FT, Lerman A (2006) Coastal ocean CO2-carbonic acid-carbonate sediment system of the Anthropocene. Global Biogeochemical Cycles 20, GB1S92, doi:10.1029/2005GB002506

  • Andersson AJ, Mackenzie FT, Lerman A (2005) Coastal ocean and carbonate systems in the high CO2 world of the Anthropocene. Am J Sci 305:875–918

    Article  Google Scholar 

  • Andersson AJ, Mackenzie FT, Ver LM (2003) Solution of shallow-water carbonates: an insignificant buffer against rising atmospheric CO2. Geology 31:513–516

    Article  Google Scholar 

  • Archer D, Emerson S, Reimers C (1989) Dissolution of calcite in deep-sea sediments: pH and O2 microelectrode results. Geochim Cosmochim Acta 53:2831–2846

    Article  Google Scholar 

  • Archer D, Kheshgi H, Maier-Reimer E (1998) Dynamics of fossil fuel CO2 neutralization by marine CaCO3. Global Biogeochem Cycles 12:259–276

    Article  Google Scholar 

  • Balzer W, Wefer G (1981) Dissolution of carbonate minerals in a subtropical shallow marine environment. Marine Chem 10:545–558

    Article  Google Scholar 

  • Barnes DJ, Cuff C (2000) Solution of reef rock buffers seawater against rising atmospheric CO2. In: Hopley D, Hopley M, Tamelander J et al (eds) Proceedings of the Ninth International Coral Reef Symposium Abstracts. State Ministry for the Environment, Indonesia, p 248

    Google Scholar 

  • Barnes DJ, Devereux MJ (1984) Productivity and calcification on a coral reef: a survey using pH and oxygen electrode techniques. J Exp Marine Biol Ecol 79:213–231

    Article  Google Scholar 

  • Bates NR (2007) Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last two decades. J Geophys Res, Oceans, 2006JC003759

  • Bates NR (2002) Seasonal variability of the impact of coral reefs on ocean CO2 and air-sea CO2 exchange. Limnol Oceanogr 47(1):43–52

    Google Scholar 

  • Bates NR, Michaels AF, Knap AH (1996) Alkalinity changes in the Sargasso Sea: geochemical evidence of calcification? Marine Chem 51:347–358

    Article  Google Scholar 

  • Bates NR, Samuels L, Merlivat L (2001) Biogeochemical and physical factors influencing seawater fCO2 and air-sea CO2 exchange on the Bermuda coral reef. Limnol Oceanogr 46(4):833–846

    Article  Google Scholar 

  • Bischoff WD, Bertram MA, Mackenzie FT et al (1993) Diagenetic stabilization pathways of magnesian calcites. Carbonates Evaporites 8:82–89

    Article  Google Scholar 

  • Bischoff WD, Mackenzie FT, Bishop FC (1987) Stabilities of synthetic magnesian calcites in aqueous solution: comparison with biogenic materials. Geochim Cosmochim Acta 51:1413–1423

    Article  Google Scholar 

  • Borowitzka MA (1981) Photosynthesis and calcification in the articulates coralline red algae Amphiroa anceps and A. foliacea. Marine Biol 117:129–132

    Google Scholar 

  • Boucher G, Clavier J, Hily C et al (1998) Contribution of soft-bottoms to the community metabolism (primary production and calcification) of a barrier reef flat (Moorea, French Polynesia). J Exp Marine Biol Ecol 225:269–283

    Article  Google Scholar 

  • Brewer PG, Goldman JC (1976) Alkalinity changes generated by phytoplankton growth. Limnol Oceanogr 21:108–117

    Google Scholar 

  • Broecker WS, Takahashi T, Simpson HJ et al (1979) Fate of fossil-fuel carbon-dioxide and the global carbon budget. Science 206:409–418

    Article  Google Scholar 

  • Brown FI (1980) The nitrogen cycle and heat budget of a subtropical lagoon, Devil’s Hole, Harrington Sound, Bermuda: Implications for nitrous oxide production and consumption in marine environments. Ph.D. dissertation, Northwestern University, Evanston, Illinois, p 317

  • Brown FI (1978) Mixing processes. In Barnes JA, Bodungen BV (eds) The Bermuda marine environment, vol 2. Bermuda Biological Station Spec. Pub. 17, pp 10–30

  • Buddemeier RW, Kleypas JA, Aronson RB (2004) Coral reefs and global climate change: Potential contributions of climate change to stresses on coral reef ecosystems. Report prepared for the Pew Center on Global Climate Change, Arlington, VA, p 44

  • Burdige DJ, Zimmerman RC (2002) Impact of sea grass density on carbonate dissolution in Bahamian sediments. Limnol Oceanogr 47:1751–1763

    Article  Google Scholar 

  • Burdige DJ, Zimmerman RC, Hu X (2007) Rates of carbonate dissolution in permeable sediments estimated from pore water profiles: the role of seagrasses. Submitted to Limnology and Oceanography.

  • Busenberg E, Plummer NL (1989) Thermodynamics of magnesian calcite solid-solutions at 25°C and 1 atm total pressure. Geochim Cosmochim Acta 53:1189–1208

    Article  Google Scholar 

  • Cai W-J, Reimers CE, Shaw T (1994) Microelectrode studies of organic carbon degradation and calcite dissolution at a California continental rise site. Geochim Cosmochim Acta 59:497–511

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res, Oceans, 110, (C9), C09S04, doi 10.1029/2004JC002671

  • Chave KE (1954) Aspects of the biogeochemistry of magnesium 1. Calcareous marine organisms. J Geol 62:266–283

    Article  Google Scholar 

  • Chave KE (1962) Factors influencing the mineralogy of carbonate sediments. Limnol Oceanogr 7:218–223

    Google Scholar 

  • Chisholm JRM, Gattuso J-P (1991) Validity of the alkalinity anomaly technique for investigating calcification and photosynthesis in coral reef communities. Limnol Oceanogr 36:1232–1239

    Google Scholar 

  • Conand C, Chabenet P, Cuet P, Letourneur Y (1997) The carbonate budget of a fringing reef in La Reunion Island (Indian Ocean): sea urchin and fish bioerosion and net calcification. Proceedings of the Eighth International Coral Reef Symposium 1:953–958

    Google Scholar 

  • Denman KL, Gargett AE (1983) Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean. Limnol Oceanogr 28:801–815

    Google Scholar 

  • Dickson AG (1981) An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Res 28A:609–623

    Article  Google Scholar 

  • Dickson A, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 38:1733–1743

    Article  Google Scholar 

  • Dillon TM, Caldwell DR (1980) The batchelor spectrum and dissipation in the upper ocean. J Geophys Res 85:1910–1916

    Google Scholar 

  • DOE (1994) Handbook of methods for the analysis of the various parameters of the carbon dioxide system in sea water; version 2. Dickson AG, Goyet C (eds) ORNL/CDIAC-74

  • Doney SC (2006) The dangers of ocean acidification. Sci Am March:58–65

  • Emerson SR, Grundmanis V, Graham V (1982) Carbonate chemistry in marine pore waters: MANOP sites C and S. Earth Planetary Sci Lett 61:220–232

    Article  Google Scholar 

  • Feely RA, Chen CT-A (1982) The effect of excess CO2 on the calculated calcite and aragonite saturation horizons in the Northeast Pacific. Geophys Res Lett 9:1294–1297

    Google Scholar 

  • Feely RA, Byrne RH, Betzer PR et al (1984) Factors influencing the degree of saturation of the surface and intermediate waters of the North Pacific Ocean with respect to aragonite. J Geophys Res 89:631–640

    Google Scholar 

  • Feely RA, Byrne RH, Acker JG et al (1988) Winter-summer variations of calcite and aragonite saturation in the Northeast Pacific. Marine Chem 25:227–241

    Article  Google Scholar 

  • Feely RA, Sabine CL, Lee K et al (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Article  Google Scholar 

  • Fonselius SH (1983) Determination of hydrogen sulphide. In: Grasshoff K, Erhardt M, Kremling K (eds) Methods of seawater analysis, 2nd edn. Verlag Chemie, Weinheim, Germany, pp 73–80

    Google Scholar 

  • Friederich GE, Walz PM, Burczynski MG et al (2002) Inorganic carbon in the central California upwelling system during the 1997–1999 El Niño–La Niña event. Progr Oceanogr 54:185–203

    Article  Google Scholar 

  • Gao K, Aruga Y, Asada K et al (1993) Calcification in the articulated coralline alga Coralline pilulifera with special reference to the effect of elevated CO2 concentration. Marine Biol 117:129–132

    Article  Google Scholar 

  • Garrels RM, Mackenzie FT (eds) (1980) Some aspects of the role of the shallow ocean in global carbon dioxide uptake. Workshop report: Carbon dioxide effects research and assessment program, United States Department of Energy

  • Gattuso J-P, Frankignoulle M, Bourge I et al (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Global Planetary Change 18:37–46

    Article  Google Scholar 

  • Gattuso J-P, Allemand PD, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–188

    Google Scholar 

  • Gattuso J-P, Pichon M, Delesalle B et al (1993) Community metabolism and air-sea CO2 fluxes in coral reef ecosystems (Moorea, French Polynesia). Marine Ecol Progr Ser 96:259–267

    Article  Google Scholar 

  • Gattuso J-P, Pichon M, Delesalle B et al (1996) Carbon fluxes in coral reefs. I. Lagrangian measurement of community metabolism and resulting air-sea CO2 disequilibrium. Marine Ecol Progr Ser 145:109–121

    Article  Google Scholar 

  • Goyet C, Bradshaw AL, Brewer PG (1991) The carbonate system in the Black Sea. Deep-Sea Res 38(Suppl. 2):S1049–S1068

    Google Scholar 

  • Halley RB, Yates KK (2000) Will reef sediments buffer corals from increased global CO2. In: Hopley D, Hopley M, Tamelander J et al (eds) Proceedings of the Ninth International Coral Reef Symposium Abstracts. State Ministry for the Environment, Indonesia, p 248

    Google Scholar 

  • Higbie J (1991) Uncertainty in the linear regression slope. Am J Phys 59:184–185

    Article  Google Scholar 

  • Iglesias-Rodriguez MD, Armstrong R, Feely R et al (2002) Progress made in study of ocean’s calcium carbonate budget. EOS Trans Am Geophys Union 83(34):365

    Google Scholar 

  • IPCC Intergovernmental Panel on Climate Change (2001) Climate change 2001: the scientific basis—contribution of working group I to the third assessment report of the intergovernmental panel on climate change. In: Houghton JT, Ding Y, Griggs DJ et al (eds). Cambridge University Press, Cambridge, United Kingdom, p 881

  • IPCC Intergovernmental Panel on Climate Change (2007) Climate change 2007: the physical science basis—contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M et al (eds). Cambridge University Press, Cambridge, United Kingdom, p 996

  • James NP (1997) The cool-water carbonate depositional realm. In: James NP, Clarke JAD (eds) Cool-water carbonates: society for sedimentary geology. Special Publication No. 56, Tulsa, OK, pp 1–20

    Google Scholar 

  • Kanamori S, Ikegami H (1980) Computer-processed potentiometric titration for the determination of calcium and magnesium in seawater. J Oceanogr 36:177–184

    Article  Google Scholar 

  • Kinsey DW (1978) Alkalinity changes and coral reef calcification. Limnol Oceanogr 23:989–991

    Google Scholar 

  • Kleypas JA, Buddemeier RW, Gattuso J-P (2001) The future of coral reefs in an age of global change. Int J Earth Sci (Geologische Rundschau) 90:426–437

    Article  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D et al (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  Google Scholar 

  • Kleypas JA, Feely RA, Fabry VJ et al (2006) Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. Report of a workshop held 18–20 April 2005, St. Petersburg, FL, sponsored by NSF, NOAA, and the U.S. Geological Survey, p 88

  • Knap AH, Michaels AF, Dow RL et al (1993) BATS methods manual, version 3. U.S. JGOFS Planning Office, Woods Hole, MA

    Google Scholar 

  • Knap AH, Michaels AF, Steinberg D et al (1997) BATS methods manual. U.S. JGOFS Planning Office, Woods Hole

    Google Scholar 

  • Kuffner IB, Andersson AJ, Jokiel P et al (submitted) Inhibition of calcifying algal communities on coral reefs due to ocean acidification.

  • Laws E (1997) Mathematical methods for oceanographers. John Wiley and Sons, Inc., New York, p 343

    Google Scholar 

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110, C09S07, doi:10.1029/2004JC002576

  • Langdon C, Takahashi T, Sweeney C et al (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cycles 14:639–654

    Article  Google Scholar 

  • Langdon C, Broecker WS, Hammond DE et al (2003) Effect of elevated CO2 on the community metabolism of an experimental coral reef. Global Biogeochemical Cycles, 17, doi:10.1029/2002GB001941

  • Leclercq N, Gattuso J-P, Jaubert J (2002) Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol Oceanogr 47:558–564

    Article  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory. U.S. Department of Energy, Oak Ridge, Tennessee

    Google Scholar 

  • Mackenzie FT, Agegian CR (1989) Biomineralization and tentative links to plate tectonics. In: Crick RE (ed) Origin, evolution, and modern aspects of biomineralization in plants and animals. Plenum Press, New York, pp 11–27

    Google Scholar 

  • Mackenzie FT, Bischoff WD, Bishop FC et al (1983) Magnesian calcites: low temperature occurrence, solubility and solid-solution behavior. In: Reeder RJ (ed) Reviews in mineralogy, carbonates: mineralogy and chemistry. Mineralogical Society of America, pp 97–143

  • Mackenzie FT, Lerman A, Ver LM (2001) Recent past and future of the global carbon cycle. In: Gerhard LC, Harrison WE, Hanson BM (eds) Geological Perspectives of Global Climate Change. Studies in Geology 47:51–82

  • Mackenzie FT, Vink S, Wollast R et al (1995) Comparative biogeochemistry of marine saline lakes. In: Lerman A, Imboden D, Gat J (eds) Physics and chemistry of lakes, 2nd edn. Springer-Verlag, Berlin, pp 265–278

    Google Scholar 

  • Marubini F, Barnett H, Langdon C et al (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Marine Ecol Progr Ser 220:153–162

    Article  Google Scholar 

  • Marubini F, Ferrier-Pagés C, Cuif J-P (2003) Suppression of skeletal growth in scleractinian corals by decreasing ambient carbonate ion concentration: a cross-family comparison. Proc R Soc Lond Ser B: Biol Sci 270:179–184

    Article  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE et al (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Google Scholar 

  • Michaels AF, Knap AH (1996) Overview of the U.S. JGOFS Bermuda Atlantic time-series study and the hydrostation S program. Deep-Sea Res II 43:157–198

    Article  Google Scholar 

  • Milliman JD (1993) Production and accumulation of calcium carbonate in the ocean: budget of a non steady state. Global Biogeochem Cycles 7:927–957

    Google Scholar 

  • Milliman JD, Droxler AW (1996) Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geol Rundsch 85:496–504

    Article  Google Scholar 

  • Morris BJ, Barnes J, Brown F et al (1977) The Bermuda marine environment: a report of the Bermuda inshore waters investigation 1976–1977. Bermuda Biological Station Spec. Pub. 15, p 120

  • Morse JW, Andersson AJ, Mackenzie FT (2006) Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and ocean acidification: Role of high Mg-calcites. Geochim Cosmochim Acta 70:5814–5830

    Article  Google Scholar 

  • Morse JW, Mackenzie FT (1990) Geochemistry of sedimentary carbonates. Elseiver, Amsterdam, p 707

    Google Scholar 

  • Moulin E, Jordens A, Wollast R (1985) Influence of the aerobic bacterial respiration on the early dissolution of carbonates in coastal sediments. Proceedings Progress in Belgium Oceanographic Research, Brussels, Belgium, pp 196–208

  • Neumann AC (1963) Processes of recent carbonate sedimentation in Harrington Sound, Bermuda. Ph.D. dissertation, Lehigh University, Betlehem, Pennsylvania, p 130

  • Neumann AC (1965) Processes of recent carbonate sedimentation in Harrington Sound, Bermuda. Bull Marine Sci 15:987–1035

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O et al (2005) Anthropogenic ocean acidification over the twenty-first century and its impacts on calcifying organisms. Nature 437:681–686

    Article  Google Scholar 

  • Plummer LN, Mackenzie FT (1974) Predicting mineral solubility from rate data: application to the dissolution of magnesian calcites. Am J Sci 274:61–83

    Article  Google Scholar 

  • Riebesell U, Zondervan I, Rost B et al (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367

    Article  Google Scholar 

  • Rodgers KS, Jokiel P, Cox EF et al (in preparation) The potential impacts of ocean acidification on reproduction in the scleractinian coral Montipora capitata

  • Sabine CL, Feely RA, Gruber N et al (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  Google Scholar 

  • Schmalz RF, Chave KE (1963) Calcium carbonate: affecting saturation in ocean waters of Bermuda. Science 139:1206–1207

    Article  Google Scholar 

  • Smith AD, Roth AA (1979) Effect of carbon dioxide concentration on calcification in the red coralline alga Bosiella orbigniana. Marine Biol 52:217–225

    Article  Google Scholar 

  • Smith SV (1978) Coral-reef area and the contributions of reefs to processes and resources of the world’s oceans. Nature 273:225–226

    Article  Google Scholar 

  • Smith SV, Kinsey DW (1978) Calcification and organic carbon metabolism as indicated by carbon dioxide. In: Stoddart DR, Johannes RE (eds) Coral reefs: research methods, Monogr. Oceanogr. Methodol., 5, UNESCO

  • Spero HJ, Bijma J, Lea DW et al (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–500

    Article  Google Scholar 

  • Steinberg DK, Carlson CA, Bates NR et al (2001) The U.S. JGOFS Bermuda Atlantic time-series study: a decade-scale look at ocean biology and biogeochemistry. Deep-Sea Res II 48(8–9):1405–1447

    Article  Google Scholar 

  • Thorstenson DC, Mackenzie FT (1974) Time variability of pore water chemistry in recent carbonate sediments, Devil’s Hole, Harrington Sound, Bermuda. Geochim Cosmochim Acta 38:1–19

    Article  Google Scholar 

  • Walter LM, Burton EA (1990) Dissolution of recent platform carbonate sediments in marine pore fluids. Am J Sci 290:601–643

    Article  Google Scholar 

  • Winn CD, Li Y-H, Mackenzie FT et al (1998) Rising surface ocean dissolved inorganic carbon at the Hawaii Ocean Time-series site. Marine Chem 60:33–47

    Article  Google Scholar 

  • Wollast R, Garrels RM, Mackenzie FT (1980) Calcite-seawater reactions in ocean surface waters. Am J Sci 280:831–848

    Article  Google Scholar 

  • Yates KK, Halley RB (2003) Measuring coral reef community metabolism using new benthic chamber technology. Coral Reefs 22:247–255

    Article  Google Scholar 

  • Yates KK, Halley RB (2006) CO 2−3 concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. Biogeosciences 3:357–369

    Article  Google Scholar 

  • Zeebe RE, Wolf-Gladrow D (2003) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam, p 346

    Google Scholar 

Download references

Acknowledgments

We are very grateful for the reviews from David Burdige and Wei-Jun Cai that significantly improved an initial draft of this manuscript. We would also like to thank Julian Mitchell, Brett Purinton, Christine Pequignet, and Marlene Jeffries for assistance and support in the field and in the lab. This research was supported in part by the National Science Foundation (Grants ATM 04-39051 and EAR02-23509; FTM) and the Bermuda Institute of Ocean Sciences Grants-in-aid program (AJA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas J. Andersson.

Appendix

Appendix

The appendix demonstrates the calculations of excess TA (ΔTA) based on linear regressions of normalized TA profiles (S = 36) for each sampling time in Devil’s Hole in 2004 and 2005 (Fig. 7). Excess TA was calculated by subtracting the pre-formed TA (TA0) from the total depth integrated TA (ΣTA) over the depth range considered. The pre-formed TA was assumed to equal the average mixed layer TA during the first day of sampling for each year. In the following equations, variables z and x represent depth and TA, respectively (see Fig. 7 for details on the linear regressions and associated variables).

1.1 Excess alkalinity 08-24-04

$$ \begin{aligned} \Updelta {\rm TA}&=\Upsigma {\rm TA}-{\rm TA}^{0} \\ &= \int\limits_{z_1 }^{z_3 } {\left[ {\Upsigma {\rm TA}} \right]{\rm d}z-} \int\limits_{z_1 }^{z_3 } {\left[ {\rm TA}^{0} \right]{\rm d}z}\\ &= \int\limits_{z_1 }^{z_2 } {\left[ {x_2 } \right]{\rm d}z+} \int\limits_{z_2 }^{z_3 } {\left[ {x_1 } \right]{\rm d}z} -\int\limits_{z_1 }^{z_3 } {\left[ {\rm TA}^{0} \right]{\rm d}z} \\ &= \int\limits_{13.5}^{19.905} {\left[ {\frac{Z+424.44}{191.86}} \right]{\rm d}z+} \int\limits_{19.906}^{23.5} {\left[ {\frac{Z+63.204}{35.885}} \right]{\rm d}z} -\int\limits_{13.5}^{23.5} {\left[ {2.2826} \right]{\rm d}z}\\ &= 0.405\,\hbox{mmol kg}^{-1}\hbox{ m} = 415\,\hbox{mmol m}^{-2} \end{aligned} $$

1.2 Excess alkalinity 09-16-04

$$ \begin{aligned} \Updelta {\rm TA}&=\Upsigma {\rm TA}-{\rm TA}^{0}\\ &= \int\limits_{z_1 }^{z_4 } {\left[ {\Upsigma {\rm TA}} \right]{\rm d}z-} \int\limits_{z_1 }^{z_4 } {\left[ {\rm TA}^{0} \right]{\rm d}z}\\ &= \int\limits_{z_1 }^{z_2 } {\left[ {x_3 } \right]{\rm d}z+} \int\limits_{z_2 }^{z_3 } {\left[ {x_2 } \right]{\rm d}z} +\int\limits_{z_3 }^{z_4 } {\left[ {x_1 } \right]{\rm d}z} -\int\limits_{z_1}^{z_4 } {\left[ {\rm TA}^{0} \right]{\rm d}z}\\ &= \int\limits_{18.8}^{20.957} {\left[ {\frac{Z+34.352}{23.409}} \right]{\rm d}z+} \int\limits_{20.958}^{21.995} {\left[ {\frac{Z+173.98}{82.505}} \right]{\rm d}z} +\int\limits_{21.996}^{23.5} {\left[ {\frac{Z-5.9582}{6.7518}} \right]{\rm d}z} -\int\limits_{18.8}^{23.5} {\left[ {2.2826} \right]{\rm d}z}\\ &= 0.466\,\hbox{mmol kg}^{-1}\hbox{ m} = 477\,\hbox{mmol m}^{-2} \end{aligned} $$

1.3 Excess alkalinity 08-02-05

$$ \begin{aligned} \Updelta {\rm TA}&=\Upsigma {\rm TA}-{\rm TA}^{0}\\ &= \int\limits_{z_1 }^{z_4 } {\left[ {\Upsigma {\rm TA}} \right]{\rm d}z-} \int\limits_{z_1 }^{z_4 } {\left[ {\rm TA}^{0} \right]{\rm d}z}\\ &= \int\limits_{z_1 }^{z_2 } {\left[ {x_3 } \right]{\rm d}z+} \int\limits_{z_2 }^{z_3 } {\left[ {x_2 } \right]{\rm d}z} +\int\limits_{z_3 }^{z_4 } {\left[ {x_1 } \right]{\rm d}z} -\int\limits_{z_1 }^{z_4 } {\left[ {\rm TA}^{0} \right]{\rm d}z}\\ &= \int\limits_{16}^{18.992} {\left[ {\frac{Z+83.367}{43.247}} \right]{\rm d}z+} \int\limits_{18.993}^{22.141} {\left[ {\frac{Z+354.64}{157.86}} \right]{\rm d}z} +\int\limits_{22.142}^{23.5} {\left[ {\frac{Z+106.24}{53.788}} \right]{\rm d}z} -\int\limits_{16}^{23.5} {\left[ {2.2976} \right]{\rm d}z} \\ &= 0.487\,\hbox{mmol kg}^{-1}\hbox{ m} = 499\,\hbox{mmol m}^{-2} \end{aligned} $$

1.4 Excess alkalinity 08-16-05

$$ \begin{aligned} \Updelta {\rm TA}&=\Upsigma {\rm TA}-{\rm TA}^{0}\\ &= \int\limits_{z_1 }^{z_4 } {\left[ {\Upsigma {\rm TA}} \right]{\rm d}z-} \int\limits_{z_1 }^{z_4 } {\left[ {\rm TA}^{0} \right]{\rm d}z}\\ &= \int\limits_{z_1 }^{z_2 } {\left[ {x_3 } \right]{\rm d}z+} \int\limits_{z_2 }^{z_3 } {\left[ {x_2 } \right]{\rm d}z} +\int\limits_{z_3 }^{z_4 } {\left[ {x_1 } \right]{\rm d}z} -\int\limits_{z_1 }^{z_4 } {\left[ {\rm TA}^{0} \right]{\rm d}z}\\ &= \int\limits_{16.68}^{20.744} {\left[ {\frac{Z+56.108}{31.892}} \right]{\rm d}z+} \int\limits_{20.745}^{22.999} {\left[ {\frac{Z+597.46}{256.54}} \right]{\rm d}z} +\int\limits_{23}^{23.5} {\left[ {\frac{Z+22.665}{18.881}} \right]{\rm d}z} -\int\limits_{16.68}^{23.5} {\left[ {2.2976} \right]{\rm d}z}\\ &= 0.520\,\hbox{mmol kg}^{-1}\hbox{ m} = 532\,\hbox{mmol m}^{-2} \end{aligned} $$

1.5 Excess alkalinity 09-06-05

$$ \begin{aligned} \Updelta {\rm TA}&=\Upsigma {\rm TA}-{\rm TA}^{0}\\ &= \int\limits_{z_1 }^{z_4 } {\left[ {\Upsigma {\rm TA}} \right]{\rm d}z-} \int\limits_{z_1 }^{z_4 } {\left[ {\rm TA}^{0} \right]{\rm d}z}\\ &= \int\limits_{z_1 }^{z_2 } {\left[ {x_3 } \right]{\rm d}z+} \int\limits_{z_2 }^{z_3 } {\left[ {x_2 } \right]{\rm d}z} +\int\limits_{z_3 }^{z_4 } {\left[ {x_1 } \right]{\rm d}z} -\int\limits_{z_1 }^{z_4 } {\left[ {\rm TA}^{0} \right]{\rm d}z}\\ &= \int\limits_{17.75}^{20.039} {\left[ {\frac{Z+9.5278}{12.092}} \right]{\rm d}z+} \int\limits_{20.040}^{23.008} {\left[ {\frac{Z+325.45}{141.29}} \right]{\rm d}z} +\int\limits_{23.009}^{23.5} {\left[ {\frac{Z+4.1585}{7.6435}} \right]{\rm d}z} -\int\limits_{17.75}^{23.5} {\left[ {2.2976} \right]{\rm d}z}\\ &= 0.684\,\hbox{mmol kg}^{-1}\hbox{ m} = 700\,\hbox{mmol m}^{-2} \end{aligned} $$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, A.J., Bates, N.R. & Mackenzie, F.T. Dissolution of Carbonate Sediments Under Rising pCO2 and Ocean Acidification: Observations from Devil’s Hole, Bermuda. Aquat Geochem 13, 237–264 (2007). https://doi.org/10.1007/s10498-007-9018-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-007-9018-8

Keywords

Navigation