Skip to main content

Advertisement

Log in

Advances in tumor nanotechnology: theragnostic implications in tumors via targeting regulated cell death

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cell death constitutes an indispensable part of the organismal balance in the human body. Generally, cell death includes regulated cell death (RCD) and accidental cell death (ACD), reflecting the intricately molecule-dependent process and the uncontrolled response, respectively. Furthermore, diverse RCD pathways correlate with multiple diseases, such as tumors and neurodegenerative diseases. Meanwhile, with the development of precision medicine, novel nano-based materials have gradually been applied in the clinical diagnosis and treatment of tumor patients. As the carrier, organic, inorganic, and biomimetic nanomaterials could facilitate the distribution, improve solubility and bioavailability, enhance biocompatibility and decrease the toxicity of drugs in the body, therefore, benefiting tumor patients with better survival outcomes and quality of life. In terms of the most studied cell death pathways, such as apoptosis, necroptosis, and pyroptosis, plenty of studies have explored specific types of nanomaterials targeting the molecules and signals in these pathways. However, no attempt was made to display diverse nanomaterials targeting different RCD pathways comprehensively. In this review, we elaborate on the potential mechanisms of RCD, including intrinsic and extrinsic apoptosis, necroptosis, ferroptosis, pyroptosis, autophagy-dependent cell death, and other cell death pathways together with corresponding nanomaterials. The thorough presentation of RCD pathways and diverse nano-based materials may provide a wider cellular and molecular landscape of tumor diagnosis and treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data obtained from public domain resources.

References

  1. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D et al (2018) Molecular mechanisms of cell death: recommendations of the nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541

    Article  PubMed  PubMed Central  Google Scholar 

  2. Song X, Zhu S, Xie Y, Liu J, Sun L et al (2018) JTC801 induces pH-dependent death specifically in Cancer cells and slows growth of tumors in mice. Gastroenterology 154:1480–1493

    Article  CAS  PubMed  Google Scholar 

  3. Holze C, Michaudel C, Mackowiak C, Haas DA, Benda C et al (2018) Oxeiptosis, a ROS-induced caspase-independent apoptosis-like cell-death pathway. Nat Immunol 19:130–140

    Article  CAS  PubMed  Google Scholar 

  4. Tsvetkov P, Coy S, Petrova B, Dreishpoon M, Verma A et al (2022) Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375:1254–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Rui T, Wang H, Li Q, Cheng Y, Gao Y et al (2021) Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis. J Pineal Res 70:e12704

    Article  CAS  PubMed  Google Scholar 

  6. Yu X, Hao M, Liu Y, Ma X, Lin W et al (2019) Liraglutide ameliorates non-alcoholic steatohepatitis by inhibiting NLRP3 inflammasome and pyroptosis activation via mitophagy. Eur J Pharmacol 864:172715

    Article  CAS  PubMed  Google Scholar 

  7. Global Burden of Disease, Cancer C, Kocarnik JM, Compton K, Dean FE, Fu W et al (2022) Cancer Incidence, Mortality, Years of Life Lost, Years lived with disability, and disability-adjusted life years for 29 Cancer Groups from 2010 to 2019: a systematic analysis for the global burden of Disease Study 2019. JAMA Oncol 8:420–444

    Article  Google Scholar 

  8. Tang R, Xu J, Zhang B, Liu J, Liang C et al (2020) Ferroptosis, necroptosis, and pyroptosis in anticancer immunity. J Hematol Oncol 13:110

    Article  PubMed  PubMed Central  Google Scholar 

  9. Strasser A, Vaux DL (2020) Cell death in the origin and treatment of Cancer. Mol Cell 78:1045–1054

    Article  CAS  PubMed  Google Scholar 

  10. Billing AM, Knudsen KB, Chetwynd AJ, Ellis LA, Tang SVY et al (2020) Fast and robust proteome screening platform identifies Neutrophil Extracellular trap formation in the lung in response to Cobalt Ferrite Nanoparticles. ACS Nano 14:4096–4110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zeng M, Thummavichai K, Chen W, Liu G, Li Z et al (2021) Study on the mechanism of tunable ferromagnetic composites with different rare earth ions. RSC Adv 11:37246–37253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou X, Li X, Zhang L, Yan F, Wang C et al (2022) Tunable morphology and highly stable alpha-CsPbI3 Nano-bricks for photoelectric devices. J Colloid Interface Sci 616:730–738

    Article  CAS  PubMed  Google Scholar 

  13. Shi Y, Lammers T (2019) Combining Nanomedicine and Immunotherapy. Acc Chem Res 52:1543–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mi P, Cabral H, Kataoka K (2020) Ligand-installed Nanocarriers toward Precision Therapy. Adv Mater 32:e1902604

    Article  PubMed  Google Scholar 

  15. Kerr JF, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wuest M, Perreault A, Richter S, Knight JC, Wuest F (2019) Targeting phosphatidylserine for radionuclide-based molecular imaging of apoptosis. Apoptosis 24:221–244

    Article  CAS  PubMed  Google Scholar 

  17. Pihan P, Carreras-Sureda A, Hetz C (2017) BCL-2 family: integrating stress responses at the ER to control cell demise. Cell Death Differ 24:1478–1487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu M, Liu X, Wang Y, Sui Y, Liu F et al (2022) Intrinsic ROS drive hair follicle cycle progression by modulating DNA damage and repair and subsequently hair follicle apoptosis and macrophage polarization. Oxid Med Cell Longev 2022:8279269

    PubMed  PubMed Central  Google Scholar 

  19. Carneiro BA, El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 17:395–417

    Article  PubMed  PubMed Central  Google Scholar 

  20. Derakhshan A, Chen Z, Van Waes C (2017) Therapeutic small molecules target inhibitor of apoptosis proteins in cancers with deregulation of extrinsic and intrinsic cell death pathways. Clin Cancer Res 23:1379–1387

    Article  CAS  PubMed  Google Scholar 

  21. Dickens LS, Boyd RS, Jukes-Jones R, Hughes MA, Robinson GL et al (2012) A death Effector Domain Chain DISC Model reveals a crucial role for Caspase-8 Chain Assembly in mediating apoptotic cell death. Mol Cell 47:291–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhu J, Petit PF, Van den Eynde BJ (2019) Apoptosis of tumor-infiltrating T lymphocytes: a new immune checkpoint mechanism. Cancer Immunol Immunother 68:835–847

    Article  CAS  PubMed  Google Scholar 

  23. Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M et al (2017) Ferroptosis: a regulated cell death Nexus linking metabolism, Redox Biology, and Disease. Cell 171:273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tang D, Kroemer G (2020) Ferroptosis. Curr Biol 30:R1292–R7

    Article  CAS  PubMed  Google Scholar 

  25. Luo C, Xu W, Tang X, Liu X, Cheng Y et al (2022) Canonical wnt signaling works downstream of iron overload to prevent ferroptosis from damaging osteoblast differentiation. Free Radic Biol Med 188:337–350

    Article  CAS  PubMed  Google Scholar 

  26. Ursini F, Maiorino M (2020) Lipid peroxidation and ferroptosis: the role of GSH and GPx4. Free Radic Biol Med 152:175–185

    Article  CAS  PubMed  Google Scholar 

  27. Bao W, Liu R, Wang YL, Wang F, Xia GH et al (2015) PLGA-PLL-PEG-Tf-based targeted nanoparticles drug delivery system enhance antitumor efficacy via intrinsic apoptosis pathway. Int J Nanomed 10:557–566

    Google Scholar 

  28. Giordano A, Tommonaro G (2019) Curcumin and Cancer. Nutrients 11:2376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu XL, Wu HC, Hu HY, Dong ZY, Dang YN et al (2020) Zein nanoparticles as nontoxic delivery system for maytansine in the treatment of non-small cell lung cancer. Drug Deliv 27:100–109

    Article  CAS  PubMed  Google Scholar 

  30. Akhtar S, Najafzadeh M, Isreb M, Newton L, Gopalan RC et al (2021) Anticancer potential of myricetin bulk and nano forms in vitro in lymphocytes from myeloma patients. Arch Toxicol 95:337–343

    Article  CAS  PubMed  Google Scholar 

  31. Hesari A, Rezaei M, Rezaei M, Dashtiahangar M, Fathi M et al (2019) Effect of curcumin on glioblastoma cells. J Cell Physiol 234:10281–10288

    Article  CAS  PubMed  Google Scholar 

  32. Askar MA, El Shawi OE, Abou Zaid OAR, Mansour NA, Hanafy AM (2021) Breast cancer suppression by curcumin-naringenin-magnetic-nano-particles: in vitro and in vivo studies. Tumour Biol 43:225–247

    Article  PubMed  Google Scholar 

  33. Kazemi S, Pourmadadi M, Yazdian F, Ghadami A (2021) The synthesis and characterization of targeted delivery curcumin using chitosan-magnetite-reduced graphene oxide as nano-carrier. Int J Biol Macromol 186:554–562

    Article  CAS  PubMed  Google Scholar 

  34. Mazloum-Ravasan S, Mohammadi M, Hiagh EM, Ebrahimi A, Hong JH et al (2022) Nano-liposomal zein hydrolysate for improved apoptotic activity and therapeutic index in lung cancer treatment. Drug Deliv 29:1049–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang L, He FJ, Gao LN, Cong MH, Sun J et al (2021) Engineering Exosome-Like Nanovesicles Derived from Asparagus cochinchinensis can inhibit the proliferation of Hepatocellular Carcinoma cells with Better Safety Profile. Int J Nanomed 16:1575–1586

    Article  Google Scholar 

  36. Paoli P, Giannoni E, Chiarugi P (2013) Anoikis molecular pathways and its role in cancer progression. Bba-Mol Cell Res 1833:3481–3498

    CAS  Google Scholar 

  37. Miao L, Liu Q, Lin CM, Luo C, Wang YH et al (2017) Targeting Tumor-Associated fibroblasts for therapeutic delivery in desmoplastic tumors. Cancer Res 77:719–731

    Article  CAS  PubMed  Google Scholar 

  38. Musetti S, Huang L (2018) Nanoparticle-mediated remodeling of the Tumor Microenvironment to Enhance Immunotherapy. ACS Nano 12:11740–11755

    Article  CAS  PubMed  Google Scholar 

  39. De Miguel D, Gallego-Lleyda A, Ayuso JM, Erviti-Ardanaz S, Pazo-Cid R et al (2016) TRAIL-coated lipid-nanoparticles overcome resistance to soluble recombinant TRAIL in non-small cell lung cancer cells. Nanotechnology 27:185101

    Article  PubMed  Google Scholar 

  40. Ke S, Zhou T, Yang P, Wang Y, Zhang P et al (2017) Gold nanoparticles enhance TRAIL sensitivity through Drp1-mediated apoptotic and autophagic mitochondrial fission in NSCLC cells. Int J Nanomed 12:2531–2551

    Article  CAS  Google Scholar 

  41. Choi JU, Kim JY, Chung SW, Lee NK, Park J et al (2021) Dual mechanistic TRAIL nanocarrier based on PEGylated heparin taurocholate and protamine which exerts both pro-apoptotic and anti-angiogenic effects. J Controlled Release 336:181–191

    Article  CAS  Google Scholar 

  42. Thapa B, Remant KC, Bahniuk M, Schmitke J, Hitt M et al (2019) Breathing New Life into TRAIL for breast Cancer Therapy: Co-Delivery of pTRAIL and complementary siRNAs using Lipopolymers. Hum Gene Ther 30:1531–1546

    Article  CAS  PubMed  Google Scholar 

  43. Zhong HH, Wang HY, Li J, Huang YZ (2019) TRAIL-based gene delivery and therapeutic strategies. Acta Pharmacol Sin 40:1373–1385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Saravanakumar K, Jeevithan E, Chelliah R, Kathiresan K, Wu WH et al (2018) Zinc-chitosan nanoparticles induced apoptosis in human acute T-lymphocyte leukemia through activation of tumor necrosis factor receptor CD95 and apoptosis-related genes. Int J Biol Macromol 119:1144–1153

    Article  CAS  PubMed  Google Scholar 

  45. Zhou L, He Q, Yang X, Zheng S, Ou X (2021) Research on mechanism of Superparamagnetic Iron Oxide Nanoparticles in activating endoplasmic reticulum and prompting apoptosis of liver cells through mediation of Tumor Necrosis Factor-α/Tumor necrosis factor receptor 1 (TNF-α/TNFR1) pathway. J Biomed Nanotechnol 17:2413–2419

    Article  CAS  PubMed  Google Scholar 

  46. Wang J, Cao Z, Wang P, Zhang X, Tang J et al (2021) Apoptotic extracellular vesicles ameliorate multiple myeloma by restoring Fas-Mediated apoptosis. ACS Nano 15:14360–14372

    Article  CAS  PubMed  Google Scholar 

  47. Wu J, Minikes AM, Gao MH, Bian HJ, Li Y et al (2019) Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature 572:402–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK et al (2017) Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature 551:247–250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zou YL, Henry WS, Ricq EL, Graham ET, Phadnis VV et al (2020) Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 585:603–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tan SK, Mahmud I, Fontanesi F, Puchowicz M, Neumann CKA et al (2021) Obesity-dependent adipokine chemerin suppresses fatty acid oxidation to Confer Ferroptosis Resistance. Cancer Discov 11:2072–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Alvarez SW, Sviderskiy VO, Terzi EM, Papagiannakopoulos T, Moreira AL et al (2017) NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551:639–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Anandhan A, Dodson M, Schmidlin CJ, Liu PF, Zhang DD (2020) Breakdown of an Ironclad Defense System: the critical role of NRF2 in mediating ferroptosis. Cell Chem Biology 27:436–447

    Article  CAS  Google Scholar 

  53. Shen ZY, Liu T, Li Y, Lau J, Yang Z et al (2018) Fenton-Reaction-acceleratable magnetic nanoparticles for ferroptosis therapy of Orthotopic Brain Tumors. ACS Nano 12:11355–11365

    Article  CAS  PubMed  Google Scholar 

  54. Sang MM, Luo RJ, Bai YD, Dou J, Zhang ZT et al (2019) Mitochondrial membrane anchored photosensitive nano-device for lipid hydroperoxides burst and inducing ferroptosis to surmount therapy-resistant cancer. Theranostics 9:6209–6223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang SF, Li FY, Qiao RR, Hu X, Liao HR et al (2018) Arginine-Rich Manganese Silicate Nanobubbles as a ferroptosis-inducing Agent for Tumor-Targeted Theranostics. ACS Nano 12:12380–12392

    Article  CAS  PubMed  Google Scholar 

  56. Cheng JJ, Zhu Y, Xing X, Xiao JM, Chen H et al (2021) Manganese-deposited iron oxide promotes tumor-responsive ferroptosis that synergizes the apoptosis of cisplatin. Theranostics 11:5418–5429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang PS, Hou Y, Zeng JF, Li YY, Wang ZH et al (2019) Coordinatively Unsaturated Fe3 + based Activatable Probes for enhanced MRI and therapy of tumors. Angew Chem Int Edit 58:11088–11096

    Article  CAS  Google Scholar 

  58. Yue LD, Wang JL, Dai ZC, Hu ZF, Chen X et al (2017) pH-Responsive, Self-Sacrificial Nanotheranostic Agent for potential in vivo and in Vitro Dual Modal MRI/CT imaging, Real-Time, and in situ monitoring of Cancer Therapy. Bioconjug Chem 28:400–409

    Article  CAS  PubMed  Google Scholar 

  59. Shen Z, Chen T, Ma X, Ren W, Zhou Z et al (2017) Multifunctional theranostic nanoparticles based on exceedingly small magnetic Iron oxide nanoparticles for T1-Weighted magnetic resonance imaging and chemotherapy. ACS Nano 11:10992–11004

    Article  CAS  PubMed  Google Scholar 

  60. Li JC, Zheng LF, Cai HD, Sun WJ, Shen MW et al (2013) Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 34:8382–8392

    Article  CAS  PubMed  Google Scholar 

  61. Ma D, Shi M, Li X, Zhang J, Fan Y et al (2020) Redox-Sensitive Clustered Ultrasmall Iron Oxide Nanoparticles for Switchable T2/T1-Weighted magnetic resonance imaging applications. Bioconjug Chem 31:352–359

    Article  CAS  PubMed  Google Scholar 

  62. Fu JK, Li T, Yang YZ, Jiang LP, Wang WH et al (2021) Activatable nanomedicine for overcoming hypoxia-induced resistance to chemotherapy and inhibiting tumor growth by inducing collaborative apoptosis and ferroptosis in solid tumors. Biomaterials 268:120537

    Article  CAS  PubMed  Google Scholar 

  63. Liu T, Liu WL, Zhang MK, Yu WY, Gao F et al (2018) Ferrous-Supply-Regeneration Nanoengineering for Cancer-Cell-Specific ferroptosis in combination with imaging-guided photodynamic therapy. ACS Nano 12:12181–12192

    Article  CAS  PubMed  Google Scholar 

  64. Wan XY, Song LQ, Pan W, Zhong H, Li N et al (2020) Tumor-targeted Cascade Nanoreactor based on Metal-Organic Frameworks for synergistic ferroptosis-starvation anticancer therapy. ACS Nano 14:11017–11028

    Article  CAS  PubMed  Google Scholar 

  65. Zhen X, Cheng PH, Pu KY (2019) Recent advances in cell membrane-camouflaged nanoparticles for Cancer Phototherapy. Small 15:e1804105

    Article  PubMed  Google Scholar 

  66. Kang T, Zhu QQ, Wei D, Feng JX, Yao JH et al (2017) Nanoparticles coated with neutrophil membranes can effectively treat Cancer Metastasis. ACS Nano 11:1397–1411

    Article  CAS  PubMed  Google Scholar 

  67. Salnikow K (2021) Role of iron in cancer. Semin Cancer Biol 76:189–194

    Article  CAS  PubMed  Google Scholar 

  68. Liu XH, Gao P, Shi MW, Chen YY, Pan W et al (2022) An autophagy-inhibitory MOF nanoreactor for tumor-targeted synergistic therapy. Biomater Sci-Uk 10:3088–3091

    Article  CAS  Google Scholar 

  69. Cao FF, Sang YJ, Liu CY, Bai FQ, Zheng LR et al (2022) Self-adaptive single-atom Catalyst boosting selective ferroptosis in Tumor cells. ACS Nano 16:855–868

    Article  CAS  PubMed  Google Scholar 

  70. Wang W, Green M, Choi JE, Gijon M, Kennedy PD et al (2019) CD8(+) T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569:270–274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kim DH, Kim WD, Kim SK, Moon DH, Lee SJ (2020) TGF-beta1-mediated repression of SLC7A11 drives vulnerability to GPX4 inhibition in hepatocellular carcinoma cells. Cell Death Dis 11:406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Xiong H, Wang C, Wang ZH, Lu HP, Yao J (2021) Self-assembled nano-activator constructed ferroptosis-immunotherapy through hijacking endogenous iron to intracellular positive feedback loop. J Controlled Release 332:539–552

    Article  CAS  Google Scholar 

  73. Angeli JPF, Krysko DV, Conrad M (2019) Ferroptosis at the crossroads of cancer-acquired drug resistance and immune evasion. Nat Rev Cancer 19:405–414

    Article  Google Scholar 

  74. Chen Z, Rao J (2018) Positron Emission Tomography Imaging of Tumor apoptosis with a caspase-sensitive Nano-Aggregation Tracer [(18)F]C-SNAT. Methods Mol Biol 1790:181–195

    Article  CAS  PubMed  Google Scholar 

  75. Shen B, Jeon J, Palner M, Ye D, Shuhendler A et al (2013) Positron emission tomography imaging of drug-induced tumor apoptosis with a caspase-triggered nanoaggregation probe. Angew Chem Int Ed Engl 52:10511–10514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Luan M, Chang J, Pan W, Chen Y, Li N et al (2018) Simultaneous fluorescence visualization of epithelial-mesenchymal transition and apoptosis processes in Tumor cells for evaluating the impact of epithelial-mesenchymal transition on drug efficacy. Anal Chem 90:10951–10957

    Article  CAS  PubMed  Google Scholar 

  77. Wang Y, J W, H H, M C, S W et al et al (2016) In Vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone Mineral Nanoparticles. ACS Nano 10:9927–9937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sosnovik DE, Schellenberger EA, Nahrendorf M, Novikov MS, Matsui T et al (2005) Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn Reson Med 54:718–724

    Article  PubMed  Google Scholar 

  79. Jung KO, Jo H, Yu JH, Gambhir SS, Pratx G (2018) Development and MPI tracking of novel hypoxia-targeted theranostic exosomes. Biomaterials 177:139–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schellenberger E, Schnorr J, Reutelingsperger C, Ungethum L, Meyer W et al (2008) Linking proteins with anionic nanoparticles via protamine: ultrasmall protein-coupled probes for magnetic resonance imaging of apoptosis. Small 4:225–230

    Article  CAS  PubMed  Google Scholar 

  81. Nishie A, Togao O, Tamura C, Yamato M, Ichikawa K et al (2019) In Vitro and in vivo detection of drug-induced apoptosis using annexin V-conjugated Ultrasmall Superparamagnetic Iron Oxide (USPIO): a pilot study. Magn Reson Med Sci 18:142–149

    Article  CAS  PubMed  Google Scholar 

  82. Zhao H, Zhou P, Huang K, Deng G, Zhou Z et al (2018) Amplifying apoptosis homing nanoplatform for Tumor Theranostics. Adv Healthc Mater 7:e1800296

    Article  PubMed  Google Scholar 

  83. Morana O, Wood W, Gregory CD (2022) The apoptosis Paradox in Cancer. Int J Mol Sci 23:1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Um W, Ko H, You DG, Lim S, Kwak G et al (2020) Necroptosis-inducible polymeric nanobubbles for enhanced Cancer Sonoimmunotherapy. Adv mater 32:e1907953

    Article  PubMed  Google Scholar 

  85. Wang T, Wang H, Pang G, He T, Yu P et al (2020) A logic AND-Gated Sonogene Nanosystem for precisely regulating the apoptosis of Tumor cells. ACS Appl Mater Interfaces 12:56692–56700

    Article  CAS  PubMed  Google Scholar 

  86. Zhang Y, Khan AR, Yang X, Shi Y, Zhao X et al (2021) A sonosensitiser-based polymeric nanoplatform for chemo-sonodynamic combination therapy of lung cancer. J Nanobiotechnol 19:57

    Article  CAS  Google Scholar 

  87. Um W, Kumar EKP, Song Y, Lee J, An JY et al (2021) Carboxymethyl dextran-based nanocomposites for enhanced chemo-sonodynamic therapy of cancer. Carbohydr Polym 273:118488

    Article  CAS  PubMed  Google Scholar 

  88. Ruan J, Wang Y, Li F, Jia R, Zhou G et al (2018) Graphene Quantum Dots for Radiotherapy. ACS Appl Mater Interfaces 10:14342–14355

    Article  CAS  PubMed  Google Scholar 

  89. Li H, Yan W, Suo X, Peng H, Yang X et al (2019) Nucleus-targeted nano delivery system eradicates cancer stem cells by combined thermotherapy and hypoxia-activated chemotherapy. Biomaterials 200:1–14

    Article  CAS  PubMed  Google Scholar 

  90. Liu TW, Li X, Wang JL, Zhang P, Huang XY et al (2020) Ag@S-nitrosothiol core-shell nanoparticles for chemo and photothermal synergistic tumor targeted therapy. J Mater Chem B 8:5483–5490

    Article  CAS  PubMed  Google Scholar 

  91. Grootjans S, Vanden Berghe T, Vandenabeele P (2017) Initiation and execution mechanisms of necroptosis: an overview. Cell Death Differ 24:1184–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Schwarzer R, Laurien L, Pasparakis M (2020) New insights into the regulation of apoptosis, necroptosis, and pyroptosis by receptor interacting protein kinase 1 and caspase-8. Curr Opin Cell Biol 63:186–193

    Article  CAS  PubMed  Google Scholar 

  93. Chen DS, Yu J, Zhang L (2016) Necroptosis: an alternative cell death program defending against cancer. Bba-Rev Cancer 1865:228–236

    CAS  Google Scholar 

  94. Dara L, Liu ZX, Kaplowitz N (2016) Questions and controversies: the role of necroptosis in liver disease. Cell Death Discov 2:16089

    Article  PubMed  PubMed Central  Google Scholar 

  95. Feoktistova M, Makarov R, Yazdi AS, Panayotova-Dimitrova D (2021) RIPK1 and TRADD regulate TNF-Induced signaling and ripoptosome formation. Int J Mol Sci 22:12459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Dai W, Cheng J, Leng X, Hu X, Ao Y (2021) The potential role of necroptosis in clinical diseases (review). Int J Mol Med 47:89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Frank D, Vince JE (2019) Pyroptosis versus necroptosis: similarities, differences, and crosstalk. Cell Death Differ 26:99–114

    Article  PubMed  Google Scholar 

  98. Wang QY, Wang YP, Ding JJ, Wang CH, Zhou XH et al (2020) A bioorthogonal system reveals antitumour immune function of pyroptosis. Nature 579:421–426

    Article  CAS  PubMed  Google Scholar 

  99. Qiu SZ, Hu Y, Dong SQ (2021) Pan-cancer analysis reveals the expression, genetic alteration and prognosis of pyroptosis key gene GSDMD. Int Immunopharmacol 101:108270

    Article  CAS  PubMed  Google Scholar 

  100. Burdette BE, Esparza AN, Zhu H, Wang SZ (2021) Gasdermin D in pyroptosis. Acta Pharm Sin B 11:2768–2782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hou JW, Zhao RC, Xia WY, Chang CW, You Y et al (2020) PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol 22:1264–1275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Park HH, Kim HR, Park SY, Hwang SM, Hong SM et al (2021) RIPK3 activation induces TRIM28 derepression in cancer cells and enhances the anti-tumor microenvironment. Mol Cancer 20:107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Aaes TL, Kaczmarek A, Delvaeye T, De Craene B, De Koker S et al (2016) Vaccination with Necroptotic Cancer cells induces efficient anti-tumor immunity. Cell Rep 15:274–287

    Article  CAS  PubMed  Google Scholar 

  104. Qiu XF, Zhang YY, Han JH (2018) RIP3 is an upregulator of aerobic metabolism and the enhanced respiration by necrosomal RIP3 feeds back on necrosome to promote necroptosis. Cell Death Differ 25:821–824

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Hsu SK, Chang WT, Lin IL, Chen YF, Padalwar NB et al (2020) The Role of Necroptosis in ROS-Mediated Cancer Therapies and Its Promising Applications. Cancers 12

  106. Huang JT, Chang LC, Cheng CS, Lin JJ, Huang SY et al (2020) Cytotoxicity produced by Silicate Nanoplatelets: study of cell death mechanisms. Toxins (Basel) 12:623

    Article  CAS  PubMed  Google Scholar 

  107. Hou XY, Yang CL, Zhang LJ, Hu TT, Sun D et al (2017) Killing colon cancer cells through PCD pathways by a novel hyaluronic acid-modified shell-core nanoparticle loaded with RIP3 in combination with chloroquine. Biomaterials 124:195–210

    Article  CAS  PubMed  Google Scholar 

  108. Chen W, Wang X, Zhao B, Zhang R, Xie Z et al (2019) CuS-MnS < ovid:sub > 2 nano-flowers for magnetic resonance imaging guided photothermal/photodynamic therapy of ovarian cancer through necroptosis. Nanoscale 11:12983–12989

    Article  CAS  PubMed  Google Scholar 

  109. Kim S, Jana B, Go EM, Lee JE, Jin S et al (2021) Intramitochondrial Disulfide polymerization controls Cancer Cell Fate. ACS Nano 15:14492–14508

    Article  CAS  PubMed  Google Scholar 

  110. Zhao HN, Chen HL, Guo ZY, Zhang W, Yu HH et al (2020) In situ photothermal activation of necroptosis potentiates black phosphorus-mediated cancer photo-immunotherapy. Chem Eng J 394:124314

    Article  CAS  Google Scholar 

  111. Gong YT, Fan ZY, Luo GP, Yang C, Huang QY et al (2019) The role of necroptosis in cancer biology and therapy. Mol Cancer 18:100

    Article  PubMed  PubMed Central  Google Scholar 

  112. Schneider AT, Gautheron J, Feoktistova M, Roderburg C, Loosen SH et al (2017) RIPK1 suppresses a TRAF2-Dependent pathway to Liver Cancer. Cancer Cell 31:94–109

    Article  CAS  PubMed  Google Scholar 

  113. Wang W, Marinis JM, Beal AM, Savadkar S, Wu Y et al (2020) RIP1 kinase drives macrophage-mediated adaptive Immune Tolerance in Pancreatic Cancer (vol 34, 757–774.e1-e7, 2018). Cancer Cell 38:585–590

    Article  CAS  PubMed  Google Scholar 

  114. Liu ZY, Zheng M, Li YM, Fan XY, Wang JC et al (2019) RIP3 promotes colitis-associated colorectal cancer by controlling tumor cell proliferation and CXCL1-induced immune suppression. Theranostics 9:3659–3673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Patel S, Webster JD, Varfolomeev E, Kwon YC, Cheng JH et al (2020) RIP1 inhibition blocks inflammatory diseases but not tumor growth or metastases. Cell Death Differ 27:161–175

    Article  CAS  PubMed  Google Scholar 

  116. Seifert L, Werba G, Tiwari S, Ly NNG, Alothman S et al (2016) The necrosome promotes pancreatic oncogenesis via CXCL1 and mincle-induced immune suppression. Nature 532:245–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wu D, Wang S, Yu GC, Chen XY (2021) Cell death mediated by the pyroptosis pathway with the aid of nanotechnology: prospects for Cancer Therapy. Angew Chem Int Edit 60:8018–8034

    Article  CAS  Google Scholar 

  118. Chen BL, Yan Y, Yang Y, Cao G, Wang X et al (2022) A pyroptosis nanotuner for cancer therapy. Nat Nanotechnol 17:788–798

    Article  CAS  PubMed  Google Scholar 

  119. Xiao Y, Zhang T, Ma XB, Yang QC, Yang LL et al (2021) Microenvironment-responsive Prodrug-Induced pyroptosis boosts Cancer Immunotherapy. Adv Sci 8:e2101840

    Article  Google Scholar 

  120. Xiong HG, Ma XB, Wang XL, Su W, Wu L et al (2021) Inspired epigenetic modulation synergy with Adenosine Inhibition elicits pyroptosis and Potentiates Cancer Immunotherapy. Adv Funct Mater 31:2100007

    Article  CAS  Google Scholar 

  121. Vijayan D, Young A, Teng MWL, Smyth MJ (2017) Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer 17:765

    Article  CAS  PubMed  Google Scholar 

  122. Zhang SP, Chuah SJ, Lai RC, Hui JHP, Lim SK et al (2018) MSC exosomes mediate cartilage repair by enhancing proliferation, attenuating apoptosis and modulating immune reactivity. Biomaterials 156:16–27

    Article  CAS  PubMed  Google Scholar 

  123. Jiang W, Yin L, Chen H, Paschall AV, Zhang L et al (2019) NaCl nanoparticles as a Cancer Therapeutic. Adv mater 31:e1904058

    Article  PubMed  PubMed Central  Google Scholar 

  124. Liu Y, Lu YP, Ning B, Su XM, Yang BR et al (2022) Intravenous delivery of living Listeria monocytogenes elicits gasdmermin-dependent Tumor pyroptosis and motivates Anti-Tumor Immune Response. ACS Nano 16:4102–4115

    Article  CAS  PubMed  Google Scholar 

  125. Hu B, Zhang Q, Gao XN, Xu KH, Tang B (2021) Monitoring the activation of Caspases-1/3/4 for describing the pyroptosis pathways of Cancer cells. Anal Chem 93:12022–12031

    Article  CAS  PubMed  Google Scholar 

  126. Xi GM, Gao JW, Wan B, Zhan P, Xu WJ et al (2019) GSDMD is required for effector CD8(+) T cell responses to lung cancer cells. Int Immunopharmacol 74:105713

    Article  CAS  PubMed  Google Scholar 

  127. Zhou ZW, He HB, Wang K, Shi XY, Wang YP et al (2020) Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science 368:eaaz7548

    Article  CAS  PubMed  Google Scholar 

  128. Jiang P, Gu SQ, Pan D, Fu JX, Sahu A et al (2018) Signatures of T cell dysfunction and exclusion predict cancer immunotherapy response. Nat Med 24:1550–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ding BB, Sheng JY, Zheng P, Li CX, Li D et al (2021) Biodegradable Upconversion nanoparticles induce pyroptosis for Cancer Immunotherapy. Nano Lett 21:8281–8289

    Article  CAS  PubMed  Google Scholar 

  130. Fan JX, Deng RH, Wang H, Liu XH, Wang XN et al (2019) Epigenetics-based Tumor cells pyroptosis for enhancing the Immunological Effect of Chemotherapeutic Nanocarriers. Nano Lett 19:8049–8058

    Article  CAS  PubMed  Google Scholar 

  131. Qiu W, Su W, Xu JM, Liang MY, Ma XB et al (2022) Immunomodulatory-photodynamic nanostimulators for invoking pyroptosis to augment Tumor Immunotherapy. Adv Healthc Mater 11:e2201233

    Article  PubMed  Google Scholar 

  132. Elion DL, Jacobson ME, Hicks DJ, Rahman B, Sanchez V et al (2018) Therapeutically active RIG-I agonist induces immunogenic Tumor Cell killing in breast cancers. Cancer Res 78:6183–6195

    Article  CAS  PubMed  Google Scholar 

  133. Jin J, Yuan P, Yu W, Lin J, Xu A et al (2022) Mitochondria-Targeting Polymer Micelle of Dichloroacetate Induced pyroptosis to Enhance Osteosarcoma Immunotherapy. ACS Nano 16:10327–10340

    Article  CAS  PubMed  Google Scholar 

  134. Dikic I, Elazar Z (2018) Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Bio 19:349–364

    Article  CAS  Google Scholar 

  135. Lahiri V, Hawkins WD, Klionsky DJ (2019) Watch what you (Self-) eat: autophagic mechanisms that modulate metabolism. Cell Metab 29:803–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bhardwaj M, Leli NM, Koumenis C, Amaravadi RK (2020) Regulation of autophagy by canonical and non-canonical ER stress responses. Sem Cancer Biol 66:116–128

    Article  Google Scholar 

  137. Stead ER, Castillo-Quan JI, Miguel VEM, Lujan C, Ketteler R et al (2019) Agephagy - Adapting Autophagy for Health during Aging. Front Cell Dev Biol 7:308

    Article  PubMed  PubMed Central  Google Scholar 

  138. Li XH, He SK, Ma BY (2020) Autophagy and autophagy-related proteins in cancer. Mol Cancer 19:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Boukhalfa A, Nascimbeni AC, Ramel D, Dupont N, Hirsch E et al (2020) PI3KC2alpha-dependent and VPS34-independent generation of PI3P controls primary cilium-mediated autophagy in response to shear stress. Nat Commun 11:294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Agrotis A, Pengo N, Burden JJ, Ketteler R (2019) Redundancy of human ATG4 protease isoforms in autophagy and LC3/GABARAP processing revealed in cells. Autophagy 15:976–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Nakamura S, Yoshimori T (2017) New insights into autophagosome-lysosome fusion. J Cell Sci 130:1209–1216

    CAS  PubMed  Google Scholar 

  142. Chang NTC (2020) Autophagy and stem cells: self-eating for Self-Renewal. Front Cell Dev Biol 8:138

    Article  PubMed  PubMed Central  Google Scholar 

  143. Chaurasia M, Gupta S, Das A, Dwarakanath BS, Simonsen A et al (2019) Radiation induces EIF2AK3/PERK and ERN1/IRE1 mediated pro-survival autophagy. Autophagy 15:1391–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Chang P, Li H, Hu H, Li Y, Wang T (2021) The role of HDAC6 in autophagy and NLRP3 inflammasome. Front Immunol 12:763831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17:528–542

    Article  CAS  PubMed  Google Scholar 

  146. Li Q, Hong L, Li H, Liu C (2017) Graphene oxide-fullerene C60 (GO-C60) hybrid for photodynamic and photothermal therapy triggered by near-infrared light. Biosens Bioelectron 89:477–482

    Article  CAS  PubMed  Google Scholar 

  147. Li ZY, Yang Y, Ming M, Liu B (2011) Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem Biophys Res Commun 414:5–8

    Article  CAS  PubMed  Google Scholar 

  148. Xu J, Wang H, Hu Y, Zhang YS, Wen L et al (2019) Inhibition of CaMKIIalpha Activity enhances Antitumor Effect of Fullerene C60 nanocrystals by suppression of autophagic degradation. Adv Sci (Weinh) 6:1801233

    Article  PubMed  Google Scholar 

  149. Ma SJ, Miao HT, Luo Y, Sun YM, Tian XL et al (2019) FePt/GO Nanosheets suppress proliferation, enhance radiosensitization and induce Autophagy of Human Non-Small Cell Lung Cancer cells. Int J Biol Sci 15:999–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Yavarpour-Bali H, Ghasemi-Kasman M, Pirzadeh M (2019) Curcumin-loaded nanoparticles: a novel therapeutic strategy in treatment of central nervous system disorders. Int J Nanomedicine 14:4449–4460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kavya KV, Vargheese S, Shukla S, Khan I, Dey DK et al (2022) A cationic amino acid polymer nanocarrier synthesized in supercritical CO2 for co-delivery of drug and gene to cervical cancer cells. Colloid Surf B 216:112584

    Article  CAS  Google Scholar 

  152. Liang HX, Liu HW, Tian BH, Ma RS, Wang YZ (2020) Carbon quantum Dot@Silver nanocomposite-based fluorescent imaging of intracellular superoxide anion. Microchim Acta 187:484

    Article  CAS  Google Scholar 

  153. Li F, Chen T, Wang F, Chen J, Zhang Y et al (2022) Enhanced Cancer Starvation Therapy enabled by an autophagy inhibitors-encapsulated biomimetic ZIF-8 Nanodrug: disrupting and harnessing dual pro-survival autophagic responses. ACS Appl Mater Interfaces 14:21860–21871

    Article  CAS  PubMed  Google Scholar 

  154. Shen YT, Xin ZC, Hu XX, Wang N, Liu SX et al (2022) Dual stimulus-responsive core-satellite SERS nanoprobes for reactive oxygen species sensing during autophagy. Talanta 250:123712

    Article  CAS  PubMed  Google Scholar 

  155. Clarke AJ, Simon AK (2019) Autophagy in the renewal, differentiation and homeostasis of immune cells. Nat Rev Immunol 19:170–183

    Article  CAS  PubMed  Google Scholar 

  156. Zhong ZY, Sanchez-Lopez E, Karin M (2016) Autophagy, inflammation, and immunity: a troika governing Cancer and its treatment. Cell 166:288–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Jiang GM, Tan Y, Wang H, Peng L, Chen HT et al (2019) The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Mol Cancer 18:17

    Article  PubMed  PubMed Central  Google Scholar 

  158. Oh DS, Lee HK (2019) Autophagy protein ATG5 regulates CD36 expression and anti-tumor MHC class II antigen presentation in dendritic cells. Autophagy 15:2091–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wang HB, Yao H, Li CS, Shi HB, Lan J et al (2019) HIP1R targets PD-L1 to lysosomal degradation to alter T cell-mediated cytotoxicity. Nat Chem Biol 15:42–50

    Article  CAS  PubMed  Google Scholar 

  160. An JY, Zhang KX, Wang BH, Wu SX, Wang YF et al (2020) Nanoenabled disruption of multiple barriers in Antigen Cross-Presentation of dendritic cells via calcium interference for enhanced chemo-immunotherapy. ACS Nano 14:7639–7650

    Article  CAS  PubMed  Google Scholar 

  161. Wang Y, Lin YX, Wang J, Qiao SL, Liu YY et al (2019) In situ manipulation of dendritic cells by an autophagy-regulative Nanoactivator enables effective Cancer Immunotherapy. ACS Nano 13:7568–7577

    Article  CAS  PubMed  Google Scholar 

  162. Xu Q, Zhang H, Liu HH, Han YB, Qiu WB et al (2022) Inhibiting autophagy flux and DNA repair of tumor cells to boost radiotherapy of orthotopic glioblastoma. Biomaterials 280:121287

    Article  CAS  PubMed  Google Scholar 

  163. Zhang LX, Jia YB, Yang JJ, Zhang L, Hou SJ et al (2022) Efficient immunotherapy of drug-free layered double hydroxide nanoparticles via neutralizing excess acid and blocking Tumor Cell Autophagy. ACS Nano 16:12036–12048

    Article  CAS  PubMed  Google Scholar 

  164. Agarwal S, Maekawa T (2020) Nano delivery of natural substances as prospective autophagy modulators in glioblastoma. Nanomed-Nanotechnol 29:102270

    Article  CAS  Google Scholar 

  165. Li YY, Gao S, Du XY, Ji JB, Xi YW et al (2022) Advances in autophagy as a target in the treatment of tumours. J Drug Target 30:166–187

    Article  CAS  PubMed  Google Scholar 

  166. Liu Y, Zhang H, Wang ZY, Wu P, Gong W (2019) 5-Hydroxytryptamine1a receptors on tumour cells induce immune evasion in lung adenocarcinoma patients with depression via autophagy/pSTAT3. Eur J Cancer 114:8–24

    Article  CAS  PubMed  Google Scholar 

  167. Wang X, Li YH, Jia F, Cui XY, Pan ZA et al (2022) Boosting nutrient starvation-dominated cancer therapy through curcumin-augmented mitochondrial Ca2 + overload and obatoclax-mediated autophagy inhibition as supported by a novel nano-modulator GO-Alg@CaP/CO. J Nanobiotechnol 20:225

    Article  Google Scholar 

  168. Li G, D L, X Q EKJK et al (2018) Nanoliposome C6-Ceramide increases the Anti-tumor Immune Response and slows growth of liver tumors in mice. Gastroenterology 154:1024–36e9

    Article  CAS  PubMed  Google Scholar 

  169. Barth BM, Wang W, Toran PT, Fox TE, Annageldiyev C et al (2019) Sphingolipid metabolism determines the therapeutic efficacy of nanoliposomal ceramide in acute myeloid leukemia. Blood Adv 3:2598–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Shaw JJP, Boyer TL, Venner E, Beck PJ, Slamowitz T et al (2020) Inhibition of lysosomal function mitigates protective mitophagy and augments Ceramide Nanoliposome-Induced cell death in Head and Neck squamous cell carcinoma. Mol Cancer Ther 19:2621–2633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Yang XP, Zhao M, Wu ZH, Chen CR, Zhang YH et al (2022) Nano-ultrasonic contrast Agent for Chemoimmunotherapy of breast Cancer by Immune Metabolism Reprogramming and Tumor Autophagy. ACS Nano 16:3417–3431

    Article  CAS  PubMed  Google Scholar 

  172. Ghosh C, Nandi A, Basu S (2019) Supramolecular self-assembly of triazine-based small molecules: targeting the endoplasmic reticulum in cancer cells. Nanoscale 11:3326–3335

    Article  CAS  PubMed  Google Scholar 

  173. Fan Z, Liu H, Xue Y, Lin J, Fu Y et al (2021) Reversing cold tumors to hot: an immunoadjuvant-functionalized metal-organic framework for multimodal imaging-guided synergistic photo-immunotherapy. Bioact Mater 6:312–325

    Article  CAS  PubMed  Google Scholar 

  174. Wang YL, Li XY, Han SD, Pan J, Xue ZZ (2022) A Cu2I2-Based coordination Framework as the selective sensor for ag + and the effective adsorbent for I-2. Cryst Growth Des 22:3719–3726

    Article  CAS  Google Scholar 

  175. Liu Y, Shoji-Kawata S, Sumpter RM, Wei YJ, Ginet V et al (2013) Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. P Natl Acad Sci USA 110:20364–20371

    Article  CAS  Google Scholar 

  176. Kriel J, Loos B (2019) The good, the bad and the autophagosome: exploring unanswered questions of autophagy-dependent cell death. Cell Death Differ 26:640–652

    Article  PubMed  PubMed Central  Google Scholar 

  177. Huang NN, Wu JB, Qiu W, Lyu Q, He J et al (2015) MiR-15a and miR-16 induce autophagy and enhance chemosensitivity of Camptothecin. Cancer Biol Ther 16:941–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Aits S, Jaattela M (2013) Lysosomal cell death at a glance. J Cell Sci 126:1905–1912

    Article  CAS  PubMed  Google Scholar 

  179. Mahapatra KK, Mishra SR, Behera BP, Patil S, Gewirtz DA et al (2021) The lysosome as an imperative regulator of autophagy and cell death. Cell Mol Life Sci 78:7435–7449

    Article  CAS  PubMed  Google Scholar 

  180. Chang SH, Lin PY, Wu TK, Hsu CS, Huang SW et al (2022) Imiquimod-induced ROS production causes lysosomal membrane permeabilization and activates caspase-8-mediated apoptosis in skin cancer cells. J Dermatol Sci 107:142–150

    Article  CAS  PubMed  Google Scholar 

  181. Liu Y, Che X, Zhang H, Fu X, Yao Y et al (2021) CAPN1 (Calpain1)-Mediated impairment of Autophagic Flux contributes to Cerebral Ischemia-Induced neuronal damage. Stroke 52:1809–1821

    Article  CAS  PubMed  Google Scholar 

  182. Brun S, Bestion E, Raymond E, Bassissi F, Jilkova ZM et al (2022) GNS561, a clinical-stage PPT1 inhibitor, is efficient against hepatocellular carcinoma via modulation of lysosomal functions. Autophagy 18:678–694

    Article  CAS  PubMed  Google Scholar 

  183. Zhang FL, Chen D, Wang Y, Zhang L, Dong W et al (2017) Lysosome-dependent necrosis specifically evoked in cancer cells by gold nanorods. Nanomedicine 12:1575–1589

    Article  CAS  PubMed  Google Scholar 

  184. Yang LX, Wu YN, Wang PW, Huang KJ, Su WC et al (2020) Silver-coated zero-valent iron nanoparticles enhance cancer therapy in mice through lysosome-dependent dual programed cell death pathways: triggering simultaneous apoptosis and autophagy only in cancerous cells. J Mater Chem B 8:4122–4131

    Article  CAS  PubMed  Google Scholar 

  185. Olim F, Neves AR, Vieira M, Tomas H, Sheng RL (2021) Self-assembly of cholesterol-doxorubicin and TPGS into Prodrug-Based nanoparticles with enhanced Cellular Uptake and Lysosome-Dependent pathway in breast Cancer cells. Eur J Lipid Sci Tech 123:2000337

    Article  CAS  Google Scholar 

  186. Borkowska M, Siek M, Kolygina DV, Sobolev YI, Lach S et al (2020) Targeted crystallization of mixed-charge nanoparticles in lysosomes induces selective death of cancer cells. Nat Nanotechnol 15:331–341

    Article  CAS  PubMed  Google Scholar 

  187. Kroemer G, Galassi C, Zitvogel L, Galluzzi L (2022) Immunogenic cell stress and death. Nat Immunol 23:487–500

    Article  CAS  PubMed  Google Scholar 

  188. Duan XP, Chan C, Lin WB (2019) Nanoparticle-mediated immunogenic cell death enables and potentiates Cancer Immunotherapy. Angew Chem Int Edit 58:670–680

    Article  CAS  Google Scholar 

  189. Xiong X, Zhao JY, Su R, Liu CP, Guo X et al (2021) Double enhancement of immunogenic cell death and antigen presentation for cancer immunotherapy. Nano Today 39:101225

    Article  CAS  Google Scholar 

  190. Zhou YX, Liu LH, Tao SF, Yao YH, Wang YL et al (2021) Parthanatos and its associated components: promising therapeutic targets for cancer. Pharmacol Res 163:105299

    Article  CAS  PubMed  Google Scholar 

  191. Porter GA, Beutner G (2018) Cyclophilin D, somehow a Master Regulator of mitochondrial function. Biomolecules 8:176

    Article  PubMed  PubMed Central  Google Scholar 

  192. Florey O, Kim SE, Sandoval CP, Haynes CM, Overholtzer M (2011) Autophagy machinery mediates macroendocytic processing and entotic cell death by targeting single membranes. Nat Cell Biol 13:1335–1343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Kazzaz NM, Sule G, Knight JS (2016) Intercellular interactions as regulators of NETosis. Front immunol 7:453

    Article  PubMed  PubMed Central  Google Scholar 

  194. Karki R, Sundaram B, Sharma BR, Lee S, Malireddi RKS et al (2021) ADAR1 restricts ZBP1-mediated immune response and PANoptosis to promote tumorigenesis. Cell Rep 37:109858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Wang YQ, Kanneganti TD (2021) From pyroptosis, apoptosis and necroptosis to PANoptosis: a mechanistic compendium of programmed cell death pathways. Comput Struct Biotec 19:4641–4657

    Article  CAS  Google Scholar 

  196. Liu J, Kuang F, Kang R, Tang D (2020) Alkaliptosis: a new weapon for cancer therapy. Cancer Gene Ther 27:267–269

    Article  PubMed  Google Scholar 

  197. Tang DL, Chen X, Kroemer G (2022) Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res 32:417–418

    Article  PubMed  PubMed Central  Google Scholar 

  198. Cobine PA, Brady DC (2022) Cuproptosis: Cellular and molecular mechanisms underlying copper-induced cell death. Mol Cell 82:1786–1787

    Article  CAS  PubMed  Google Scholar 

  199. Rao CY, Sun XY, Ouyang JM (2019) Effects of physical properties of nano-sized hydroxyapatite crystals on cellular toxicity in renal epithelial cells. Mat Sci Eng C-Mater 103:109807

    Article  CAS  Google Scholar 

  200. Kunovac A, Hathaway QA, Pinti MV, Goldsmith WT, Durr AJ et al (2019) ROS promote epigenetic remodeling and cardiac dysfunction in offspring following maternal engineered nanomaterial (ENM) exposure. Part Fibre Toxicol 16:24

    Article  PubMed  PubMed Central  Google Scholar 

  201. Perry JL, Reuter KG, Luft JC, Pecot CV, Zamboni W et al (2017) Mediating Passive Tumor Accumulation through particle size, tumor type, and location. Nano Lett 17:2879–2886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Ghosh A, Xu WN, Gupta N, Gracias DH (2020) Active matter therapeutics. Nano Today 31:100836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Navya PN, Kaphle A, Srinivas SP, Bhargava SK, Rotello VM et al (2019) Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Converg 6:23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Li K, Xu DF, Liao H, Xue Y, Sun MY et al (2022) A review on the generation, discharge, distribution, environmental behavior, and toxicity (especially to microbial aggregates) of nano-TiO2 in sewage and surface-water and related research prospects. Sci Total Environ 824:153866

    Article  CAS  PubMed  Google Scholar 

  205. Murugadoss S, Brassinne F, Sebaihi N, Petry J, Cokic SM et al (2020) Agglomeration of titanium dioxide nanoparticles increases toxicological responses in vitro and in vivo. Part Fibre Toxicol 17:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Hedberg YS, Wei Z, McCarrick S, Romanovski V, Theodore J et al (2021) Welding fume nanoparticles from solid and flux-cored wires: solubility, toxicity, and role of fluorides. J Hazard Mater 413:125273

    Article  CAS  PubMed  Google Scholar 

  207. Ji CD, Cheng WY, Hu YS, Liu YF, Liu FY et al (2021) A nano vector with photothermally enhanced drug release and retention to overcome cancer multidrug resistance. Nano Today 36:101020

    Article  CAS  Google Scholar 

  208. Cheng Z, Li M, Dey R, Chen Y (2021) Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol 14:85

    Article  PubMed  PubMed Central  Google Scholar 

  209. Jia L, Li X, Liu H, Xia JD, Shi XY et al (2021) Ultrasound-enhanced precision tumor theranostics using cell membrane-coated and pH-responsive nanoclusters assembled from ultrasmall iron oxide nanoparticles. Nano Today 36:101022

    Article  CAS  Google Scholar 

  210. Li ZH, Chen Y, Sun YX, Zhang XZ (2021) Platinum-doped prussian blue nanozymes for Multiwavelength Bioimaging guided Photothermal Therapy of Tumor and Anti-Inflammation. ACS Nano 15:5189–5200

    Article  CAS  PubMed  Google Scholar 

  211. Paramasivam G, Kayambu N, Rabel AM, Sundramoorthy AK, Sundaramurthy A (2017) Anisotropic noble metal nanoparticles: synthesis, surface functionalization and applications in biosensing, bioimaging, drug delivery and theranostics. Acta Biomater 49:45–65

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

None.

Funding

This study was supported by grants from the National Natural Science Foundation of China (82070784, 81702536) to J. A., a grant from Science & Technology Department of Sichuan Province, China (2022JDRC0040) to J. A, a grant from Science & Technology Department of Sichuan Province, China (2020YJ0054, 2021YFC2009304) to L. L, a grant from Beijing National Laboratory for Molecular Sciences (BNLMS202108) to X.W., and the Chinese Academy of Sciences Pioneer Hundred Talents Program.

Author information

Authors and Affiliations

Authors

Contributions

Jin Li: Conceptualization, Roles/Writing - original draft; Xianyanling Yi: Writing - review & editing; Liangren Liu: Visualization; Xiaohui Wang: Visualization; Jianzhong Ai: Supervision. All authors contributed to and revised the submitted version of the paper.

Corresponding authors

Correspondence to Liangren Liu, Xiaohui Wang or Jianzhong Ai.

Ethics declarations

Competing interests

Jin Li, Xianyanling Yi, Liangren Liu, Xiaohui Wang, Jianzhong Ai have no conflicts of interest that are directly relevant to the content of this article.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xianyanling Yi have contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yi, X., Liu, L. et al. Advances in tumor nanotechnology: theragnostic implications in tumors via targeting regulated cell death. Apoptosis 28, 1198–1215 (2023). https://doi.org/10.1007/s10495-023-01851-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01851-3

Keywords

Navigation