Skip to main content

Advertisement

Log in

m6A methyltransferase WTAP regulates myocardial ischemia reperfusion injury through YTHDF1/FOXO3a signaling

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

N6-methyladenosine (m6A) is emerging as an essential regulator in the progression of myocardial ischemia reperfusion (I/R) injury. However, the in-depth functions and mechanisms for m6A are still unclear. This work aimed to explore the potential functions and mechanisms for myocardial I/R injury. In this study, m6A methyltransferase WTAP and m6A modification level elevated in the hypoxia/reoxygenation (H/R) induced rat cardiomyocytes (H9C2) and I/R injury rat model. Bio-functional cellular experiments demonstrated that knockdown of WTAP remarkably released the proliferation and reduced the apoptosis and inflammatory cytokines induced by H/R. Moreover, exercise training alleviated WTAP level in exercise-trained rats. Mechanistically, methylated RNA immunoprecipitation sequencing (MeRIP-Seq) revealed that a remarkable m6A modification site was found in the 3’-UTR of FOXO3a mRNA. Moreover, WTAP triggered the installation of m6A modification on FOXO3a mRNA through m6A reader YTHDF1, thereby enhancing the stability of FOXO3a mRNA. Collectively, WTAP/YTHDF1/m6A/FOXO3a axis regulates the myocardial I/R injury progression, which provides new insights for the treatment of myocardial injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No research data shared.

References

  1. Regan B, O’Kennedy R, Collins D (2021) Advances in point-of-care testing for cardiovascular diseases. Adv Clin Chem 104:1–70

    Article  CAS  PubMed  Google Scholar 

  2. Krittanawong C, Narasimhan B, Wang Z, Hahn J, Virk HUH, Farrell AM et al (2021) Association between chocolate consumption and risk of coronary artery disease: a systematic review and meta-analysis. Eur J Prev Cardiol 28:e33–e5

    Article  PubMed  Google Scholar 

  3. Pan Q, Liu Y, Ma W, Kan R, Zhu H, Li D (2022) Cardioprotective Effects and possible mechanisms of Luteolin for Myocardial Ischemia-Reperfusion Injury: a systematic review and Meta-analysis of preclinical evidence. Front Cardiovasc Med 9:685998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. He J, Liu D, Zhao L, Zhou D, Rong J, Zhang L et al (2022) Myocardial ischemia/reperfusion injury: mechanisms of injury and implications for management (review). Experimental and therapeutic medicine 23:430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Prem PN, Sivakumar B, Boovarahan SR, Kurian GA (2022) Recent advances in potential of Fisetin in the management of myocardial ischemia-reperfusion injury-A systematic review. Phytomedicine: Int J phytotherapy phytopharmacology 101:154123

    Article  CAS  Google Scholar 

  6. Amani H, Habibey R, Hajmiresmail SJ, Latifi S, Pazoki-Toroudi H, Akhavan O (2017) Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J Mater Chem B 5:9452–9476

    Article  CAS  PubMed  Google Scholar 

  7. Dai F, Wu Y, Lu Y, An C, Zheng X, Dai L et al (2020) Crosstalk between RNA m(6)a modification and non-coding RNA contributes to Cancer Growth and Progression. Mol therapy Nucleic acids 22:62–71

    Article  CAS  Google Scholar 

  8. Liang Z, Kidwell RL, Deng H, Xie Q (2020) Epigenetic N6-methyladenosine modification of RNA and DNA regulates cancer. Cancer biology & medicine 17:9–19

    Article  CAS  Google Scholar 

  9. Wang T, Kong S, Tao M, Ju S (2020) The potential role of RNA N6-methyladenosine in Cancer progression. Mol Cancer 19:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dai D, Wang H, Zhu L, Jin H, Wang X (2018) N6-methyladenosine links RNA metabolism to cancer progression. Cell Death Dis 9:124

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yue B, Song C, Yang L, Cui R, Cheng X, Zhang Z et al (2019) METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer. Mol Cancer 18:142

    Article  PubMed  PubMed Central  Google Scholar 

  12. Song H, Feng X, Zhang H, Luo Y, Huang J, Lin M et al (2019) METTL3 and ALKBH5 oppositely regulate m(6)a modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy 15:1419–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang FY, Zhang L, Zheng Y, Dong H (2022) Dexmedetomidine attenuates ischemia and reperfusion-induced cardiomyocyte injury through p53 and forkhead box O3a (FOXO3a)/p53-upregulated modulator of apoptosis (PUMA) signaling signaling. Bioengineered 13:1377–1387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang R, Li Y, Liu X, Qin S, Guo B, Chang L et al (2020) FOXO3a-mediated long non-coding RNA LINC00261 resists cardiomyocyte hypoxia/reoxygenation injury via targeting miR23b-3p/NRF2 axis. J Cell Mol Med 24:8368–8378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao Y, Pei X, Liu Y, Xu Y, Peng M, Yang H (2021) [Down-regulation of miR-488 targeting to promote Jag1 expression inhibits hypoxia-reoxygenation myocardial H9c2 cell damage]. Zhonghua yi xue yi chuan xue za zhi = Zhonghua yixue yichuanxue zazhi = chinese. J Med Genet 38:1199–1203

    Google Scholar 

  16. Xu H, Cheng J, Wang X, Liu H, Wang S, Wu J et al (2019) Resveratrol pretreatment alleviates myocardial ischemia/reperfusion injury by inhibiting STIM1-mediated intracellular calcium accumulation. J Physiol Biochem 75:607–618

    Article  CAS  PubMed  Google Scholar 

  17. Niu Y, Lin Z, Wan A, Chen H, Liang H, Sun L et al (2019) RNA N6-methyladenosine demethylase FTO promotes breast tumor progression through inhibiting BNIP3. Mol Cancer 18:46

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yang F, Jin H, Que B, Chao Y, Zhang H, Ying X et al (2019) Dynamic m(6)a mRNA methylation reveals the role of METTL3-m(6)A-CDCP1 signaling axis in chemical carcinogenesis. Oncogene 38:4755–4772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dong W, Bi J, Liu H, Yan D, He Q, Zhou Q et al (2019) Circular RNA ACVR2A suppresses bladder cancer cells proliferation and metastasis through miR-626/EYA4 axis. Mol Cancer 18:95

    Article  PubMed  PubMed Central  Google Scholar 

  20. Parry TL, Starnes JW, O’Neal SK, Bain JR, Muehlbauer MJ, Honcoop A et al (2018) Untargeted metabolomics analysis of ischemia-reperfusion-injured hearts ex vivo from sedentary and exercise-trained rats. Metabolomics: Official journal of the Metabolomic Society 14:8

    Article  PubMed  Google Scholar 

  21. Liu CY, Zhang YH, Li RB, Zhou LY, An T, Zhang RC et al (2018) LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun 9:29

    Article  PubMed  PubMed Central  Google Scholar 

  22. Deng X, Su R, Weng H, Huang H, Li Z, Chen J (2018) RNA N(6)-methyladenosine modification in cancers: current status and perspectives. Cell Res 28:507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zeng C, Huang W, Li Y, Weng H (2020) Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol 13:117

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li Y, Weng H, Frye M (2018) RNA modifications modulate gene expression during development, vol 361. Science, New York, NY, pp 1346–1349

    Google Scholar 

  25. Zheng W, Dong X, Zhao Y, Wang S, Jiang H, Zhang M et al (2019) Multiple functions and mechanisms underlying the role of METTL3 in human cancers. Front Oncol 9:1403

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping F et al (2020) Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ 27:2635–2650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pefanis A, Ierino FL, Murphy JM, Cowan PJ (2019) Regulated necrosis in kidney ischemia-reperfusion injury. Kidney Int 96:291–301

    Article  PubMed  Google Scholar 

  28. Gui Y, Lu Q, Gu M, Wang M, Liang Y, Zhu X et al (2019) Fibroblast mTOR/PPARγ/HGF axis protects against tubular cell death and acute kidney injury. Cell Death Differ 26:2774–2789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu L, Wang Y, Wu J, Liu J, Qin Z, Fan H (2020) N(6)-Methyladenosine: a potential breakthrough for Human Cancer. Mol therapy Nucleic acids 19:804–813

    Article  CAS  PubMed  Google Scholar 

  30. Wang J, Zhang J, Ma Y, Zeng Y, Lu C, Yang F et al (2021) WTAP promotes myocardial ischemia/reperfusion injury by increasing endoplasmic reticulum stress via regulating m(6)a modification of ATF4 mRNA. Aging 13:11135–11149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhao X, Yang L, Qin L Methyltransferase-like 3 (METTL3) attenuates cardiomyocyte apoptosis with myocardial ischemia-reperfusion (I/R) injury through mir-25-3p and miR-873-5p. Cell biology international 2021.

  32. Feehan RP, Shantz LM (2016) Negative regulation of the FOXO3a transcription factor by mTORC2 induces a pro-survival response following exposure to ultraviolet-B irradiation. Cell Signal 28:798–809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lavie CJ, Ozemek C, Carbone S, Katzmarzyk PT, Blair SN (2019) Sedentary behavior, Exercise, and Cardiovascular Health. Circul Res 124:799–815

    Article  CAS  Google Scholar 

  34. Adams V, Linke A (2019) Impact of exercise training on cardiovascular disease and risk. Biochim et Biophys acta Mol basis disease 1865:728–734

    Article  CAS  Google Scholar 

  35. Adams V, Reich B, Uhlemann M, Niebauer J (2017) Molecular effects of exercise training in patients with cardiovascular disease: focus on skeletal muscle, endothelium, and myocardium. Am J Physiol Heart Circ Physiol 313:H72–h88

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

No.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangyu Wen.

Ethics declarations

Conflict of interest

All authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Fu, L., Li, Y. et al. m6A methyltransferase WTAP regulates myocardial ischemia reperfusion injury through YTHDF1/FOXO3a signaling. Apoptosis 28, 830–839 (2023). https://doi.org/10.1007/s10495-023-01818-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01818-4

Keywords

Navigation