Skip to main content
Log in

Detergent sclerosants at sub-lytic concentrations induce endothelial cell apoptosis through a caspase dependent pathway

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

To investigate the apoptotic effects of detergent sclerosants sodium tetradecylsulphate (STS) and polidocanol (POL) on endothelial cells at sub-lytic concentrations. Human umbilical vein endothelial cells (HUVECs) were isolated and labelled with antibodies to assess for apoptosis and examined with confocal microscopy and flow cytometry. Isolated HUVECs viability was assessed using propidium iodide staining. Early apoptosis was determined by increased phosphatidylserine exposure by lactadherin binding. Caspase 3, 8, 9 and Bax activation as well as inhibitory assays with Pan Caspase (Z-VAD-FMK) and Bax (BI-6C9) were assessed to identify apoptotic pathways. Porimin activation was used to assess cell membrane permeability. Cell lysis reached almost 100 % with STS at 0.3 % and with POL at 0.6 %. Apoptosis was seen with both STS and POL at concentrations ranging from 0.075 to 0.15 %. PS exposure increased with both STS and POL and exhibited a dose-dependent trend. Active Caspase 3, 8 and 9 but not Bax were increased in HUVECs stimulated with low concentrations of both STS and POL. Inhibitory assays demonstrated Caspase 3, 8, 9 inhibition at low concentrations (0.075 to 0.6 %) with both STS and POL. Both agents increased the activation of porimin at all concentrations. Both sclerosants induced endothelial cell (EC) apoptosis at sub-lytic concentrations through a caspase-dependant pathway. Both agents induced EC oncosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kobayashi S, Crooks S, Eckmann D (2006) Dose- and time-dependent liquid sclerosant effects on endothelial cell death. Dermatol Surg 32:1444–1452

    CAS  PubMed  Google Scholar 

  2. Whiteley M, Dos Santos S, Fernandez-Hart T, Lee C, Li J (2016) Media damage following detergent sclerotherapy appears to be secondary to the induction of inflammation and apoptosis: an immunohistochemical study elucidating previous histological observations. Eur J Vasc Endovasc Surg. doi:10.1016/j.ejvs.2015.11.011

    PubMed  Google Scholar 

  3. Parsi K, Exner T, Connor DE, Ma DDF, Joseph JE (2007) In vitro effects of detergent sclerosants on coagulation, platelets and microparticles. Eur J Vasc Endovasc Surg 34:731–740

    Article  CAS  PubMed  Google Scholar 

  4. Parsi KET, Connor DE, Herbert A, Ma DD, Joseph JE (2008) The lytic effects of detergent sclerosants on erythrocytes, platelets, endothelial cells and microparticles are attenuated by albumin and other plasma components in vitro. Eur J Vasc Endovasc Surg 36:216–223

    Article  CAS  PubMed  Google Scholar 

  5. Parsi K, Connor DE, Pilotelle A, Low J, Ma DDF, Joseph JE (2012) Low concentration detergent sclerosants induce platelet activation but inhibit aggregation due to suppression of GPIIb/IIIa activation in vitro. Thromb Res 130(3):472–478

    Article  CAS  PubMed  Google Scholar 

  6. Cooley-Andrade O, Connor DE, Ma DDF, Parsi K (2015) Morphological changes in vascular and circulating blood cells following exposure to detergent sclerosants. Phlebology 31:177–191

    Article  PubMed  Google Scholar 

  7. Cooley-Andrade O, Goh W, Connor D, Ma D, Parsi K (2016) Detergent sclerosants stimulate leukocyte apoptosis and oncosis. Eur J Vasc Endovasc Surg. doi:10.1016/j.ejvs.2016.03.008

    PubMed  Google Scholar 

  8. Van Cruchten S, Van Den Broeck W (2002) Morphological and Biochemical Aspects of Apoptosis. Oncosis and Necrosis. Anat Histol Embryol. 31:214–223

    Article  PubMed  Google Scholar 

  9. Weerasinghe P, Buja L (2012) Oncosis: an important non-apoptotic mode of cell death. Exp Mol Pathol 93:302–308

    Article  CAS  PubMed  Google Scholar 

  10. Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kruidering M, Evan G (2000) Caspase-8 in apoptosis: the beginning of “The End”? Life 50:85–90

    CAS  PubMed  Google Scholar 

  12. Fraser S, Midwinter R, Coupland L, Kong S, Berger B, Yeo J et al (2015) Heme oxygenase-1 deficiency alters erythroblastic island formation, steady-state erythropoiesis and red blood cell lifespan in mice. Haematologica 100(5):601–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brauchle E, Thude S, Brucker S, Schenke-Layland K (2014) Cell death stages in single apoptotic and necrotic cells monitored by Raman microspectroscopy. Sci Rep 4:4698. doi:10.1038/srep04698

    Article  PubMed  PubMed Central  Google Scholar 

  14. Waehrens LN, Heegaard CW, Gilbert GE, Rasmussen JT (2009) Bovine lactadherin as a calcium-independent imaging agent of phosphatidylserine expressed on the surface of apoptotic HeLa cells. J Histochem Cytochem 57:907–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hsiao W, Tsai M, Jow G, Tien L, Lee Y (2012) Involvement of Smac, p53, and caspase pathways in induction of apoptosis by gossypol in human retinoblastoma cells. Mol Vis 18:2033–2042

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Krysko D, Vanden Berghe T, Parthoens E, D’Herde K, Vandenabeele P (2008) Methods for distinguishing apoptotic from necrotic cells and measuring their clearance. Methods Enzymol 442:307–341

    Article  PubMed  Google Scholar 

  17. Krysko O, de Ridder L, Cornelissen M (2004) Phosphatidylserine exposure during early primary necrosis (oncosis) in JB6 cells as evidenced by immunogold labeling technique. Apoptosis 9(3):495–500

    Article  CAS  PubMed  Google Scholar 

  18. Patel V, Longacre A, Hsiao K, Fan H, Meng F, Mitchell J et al (2006) Apoptotic cells, at all stages of the death process, trigger characteristic signaling events that are divergent from and dominant over those triggered by necrotic cells. J Biol Chem 281(8):4663–4670

    Article  CAS  PubMed  Google Scholar 

  19. Gorak-Stolinska P, Truman J, Kemeny D, Noble A (2001) Activation-induced cell death of human T-cell subsets is mediated by Fas and granzyme B but is independent of TNF-a. J Leukoc Biol 70:756–766

    CAS  PubMed  Google Scholar 

  20. Cooley-Andrade O, Jothidas A, Goh W, Connor DE, Parsi K (2014) Low concentration detergent sclerosants stimulate white blood cells and release pro-inflammatory and proangiogenic cytokines in vitro. J Vasc Surg 2(4):433–440

    PubMed  Google Scholar 

  21. Wang L, Du F, Wang X (2008) TNF-α induces two distinct caspase-8 activation pathways. Cell 133:693–703

    Article  CAS  PubMed  Google Scholar 

  22. Yuan S, Akey C (2013) Apoptosome structure, assembly and procaspase activation. Structure 21(4):501–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zamorano S, Rojas-Rivera D, Lisbona F, Parra V, Court F, Villegas R et al (2012) A BAX/BAK and cyclophilin D-independent intrinsic apoptosis pathway. PLoS One 7(6):e37782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Parsi K (2015) Interaction of detergent sclerosants with cell membranes. Phlebology 30(5):306–315

    Article  PubMed  Google Scholar 

  25. Ma F, Zhang C, Prasad K, Freeman G, Schlossman S (2001) Molecular cloning of porimin, a novel cell surface receptor mediating oncotic cell death. PNAS 98(17):9778–9783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Buja L (2005) Myocardial ischemia and reperfusion injury. Cardiovasc Pathol 14(4):170–175

    Article  CAS  PubMed  Google Scholar 

  27. Huang Q, Zhang R, Zou L, Cao X, Chu X (2013) Cell death pathways in astrocytes with a modified model of oxygen-glucose deprivation. PLoS One 8(4):e61345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fulda S, Debatin K (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811

    Article  CAS  PubMed  Google Scholar 

  29. Du J, Zhang H, Ma Z, Ji K (2010) artesunate induces oncosis-like cell death in vitro and has antitumor activity against pancreatic cancer xenografts in vivo. Cancer Chemother Pharmacol 65:895–902

    Article  CAS  PubMed  Google Scholar 

  30. Suarez Y, Gonzalez L, Cuadrado A, Berciano M, Lafarga M, Munoz A, Kahalalide F (2003) New marine-derived compound, induces oncosis in human prostate and breast cancer cells. Mol Cancer Ther 2:863–872

    CAS  PubMed  Google Scholar 

  31. Maadidi S, Faletti L, Berg B, Wenzl C, Wieland K, Chen Z et al (2014) A novel mitochondrial MAVS/Caspase-8 platform links RNA virus-induced innate antiviral signaling to Bax/Bak-independent apoptosis. J Immunol 192:1171–1183

    Article  PubMed  Google Scholar 

  32. Strupp W, Weidinger G, Scheller C, Ehret R, Ohnimus H, Girschick H et al (2000) Treatment of cells with detergent activates caspases and induces apoptotic cell death. J Membr Biol 175:181–189

    Article  CAS  PubMed  Google Scholar 

  33. Karmakar S, Cummings RD, McEver RP (2005) Glycobiology and extracellular matrices: contributions of Ca2+ to galectin-1-induced exposure of phosphatidylserine on activated neutrophils. J Biol Chem 280:28623–28631

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by the Academy of Phlebology and supported by the Dermatology, Phlebology and Fluid Mechanics Research Laboratory, St Vincent’s Centre for Applied Medical Research, Sydney, Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurosh Parsi.

Ethics declarations

Conflict of Interests

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cooley-Andrade, O., Cheung, K., Chew, AN. et al. Detergent sclerosants at sub-lytic concentrations induce endothelial cell apoptosis through a caspase dependent pathway. Apoptosis 21, 836–845 (2016). https://doi.org/10.1007/s10495-016-1252-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-016-1252-3

Keywords

Navigation