Skip to main content

Advertisement

Log in

Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) prevents apoptosis induced by hydrogen peroxide in basilar artery smooth muscle cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cystic fibrosis transmembrane conductance regulator (CFTR) acts as a cAMP-dependent chloride channel, has been studied in various types of cells. CFTR is abundantly expressed in vascular smooth muscle cells and closely linked to vascular tone regulation. However, the functional significance of CFTR in basilar vascular smooth muscle cells (BASMCs) remains elusive. Accumulating evidence has shown the direct role of CFTR in cell apoptosis that contributes to several main pathological events in CF, such as inflammation, lung injury and pancreatic insufficiency. We therefore investigated the role of CFTR in BASMC apoptotic process induced by hydrogen peroxide (H2O2). We found that H2O2-induced cell apoptosis was parallel to a significant decrease in endogenous CFTR protein expression. Silencing CFTR with adenovirus-mediated CFTR specific siRNA further enhanced H2O2-induced BASMC injury, mitochondrial cytochrome c release into cytoplasm, cleaved caspase-3 and -9 protein expression and oxidized glutathione levels; while decreased cell viability, the Bcl-2/Bax ratio, mitochondrial membrane potential, total glutathione levels, activities of superoxide dismutase and catalase. The pharmacological activation of CFTR with forskolin produced the opposite effects. These results strongly suggest that CFTR may modulate oxidative stress-related BASMC apoptosis through the cAMP- and mitochondria-dependent pathway and regulating endogenous antioxidant defense system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cantin A (1995) Cystic fibrosis lung inflammation: early, sustained, and severe. Am J Respir Crit Care Med 151:939–941

    CAS  PubMed  Google Scholar 

  2. Cohen TS, Prince A (2012) Cystic fibrosis: a mucosal immunodeficiency syndrome. Nat Med 18:509–519

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Farrell PM, Rosenstein BJ, White TB et al (2008) Guidelines for diagnosis of cystic fibrosis in newborns through older adults: cystic Fibrosis Foundation consensus report. J Pediatr 153:S4–S14

    Article  PubMed Central  PubMed  Google Scholar 

  4. Nichols D, Chmiel J, Berger M (2008) Chronic inflammation in the cystic fibrosis lung: alterations in inter- and intracellular signaling. Clin Rev Allergy Immunol 34:146–162

    Article  CAS  PubMed  Google Scholar 

  5. Robert R, Norez C, Becq F (2005) Disruption of CFTR chloride channel alters mechanical properties and cAMP-dependent Cl- transport of mouse aortic smooth muscle cells. J Physiol 568:483–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Robert R, Savineau JP, Norez C, Becq F, Guibert C (2007) Expression and function of cystic fibrosis transmembrane conductance regulator in rat intrapulmonary arteries. Eur Respir J 30:857–864

    Article  CAS  PubMed  Google Scholar 

  7. Robert R, Thoreau V, Norez C et al (2004) Regulation of the cystic fibrosis transmembrane conductance regulator channel by beta-adrenergic agonists and vasoactive intestinal peptide in rat smooth muscle cells and its role in vasorelaxation. J Biol Chem 279:21160–21168

    Article  CAS  PubMed  Google Scholar 

  8. Michoud MC, Robert R, Hassan M et al (2009) Role of the cystic fibrosis transmembrane conductance channel in human airway smooth muscle. Am J Respir Cell Mol Biol 40:217–222

    Article  CAS  PubMed  Google Scholar 

  9. Vandebrouck C, Melin P, Norez C et al (2006) Evidence that CFTR is expressed in rat tracheal smooth muscle cells and contributes to bronchodilation. Respir Res 7:113

    Article  PubMed Central  PubMed  Google Scholar 

  10. Zhang YP, Zhang H, Duan DD (2013) Chloride channels in stroke. Acta Pharmacol Sin 34:17–23

    Article  PubMed Central  PubMed  Google Scholar 

  11. Super M, Irtiza-Ali A, Roberts SA et al (2004) Blood pressure and the cystic fibrosis gene: evidence for lower pressure rises with age in female carriers. Hypertension 44:878–883

    Article  CAS  PubMed  Google Scholar 

  12. Lieberman J, Rodbard S (1975) Low blood pressure in young adults with cystic fibrosis: an effect of chronic salt loss in sweat? Ann Intern Med 82:806–808

    Article  CAS  PubMed  Google Scholar 

  13. Maiuri L, Raia V, De Marco G et al (1997) DNA fragmentation is a feature of cystic fibrosis epithelial cells: a disease with inappropriate apoptosis? FEBS Lett 408:225–231

    Article  CAS  PubMed  Google Scholar 

  14. Soleti R, Porro C, Martinez MC (2013) Apoptotic process in cystic fibrosis cells. Apoptosis 18:1029–1038

    Article  CAS  PubMed  Google Scholar 

  15. McKeon DJ, Condliffe AM, Cowburn AS et al (2008) Prolonged survival of neutrophils from patients with Delta F508 CFTR mutations. Thorax 63:660–661

    Article  CAS  PubMed  Google Scholar 

  16. Moriceau S, Kantari C, Mocek J et al (2009) Coronin-1 is associated with neutrophil survival and is cleaved during apoptosis: potential implication in neutrophils from cystic fibrosis patients. J Immunol 182:7254–7263

    Article  CAS  PubMed  Google Scholar 

  17. Rottner M, Kunzelmann C, Mergey M, Freyssinet JM, Martinez MC (2007) Exaggerated apoptosis and NF-kappaB activation in pancreatic and tracheal cystic fibrosis cells. FASEB J 21:2939–2948

    Article  PubMed  Google Scholar 

  18. Bodas M, Min T, Vij N (2011) Critical role of CFTR-dependent lipid rafts in cigarette smoke-induced lung epithelial injury. Am J Physiol Lung Cell Mol Physiol 300:L811–L820

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Xu Y, Krause A, Hamai H, Harvey BG, Worgall TS, Worgall S (2010) Proinflammatory phenotype and increased caveolin-1 in alveolar macrophages with silenced CFTR mRNA. PLoS One 5:e11004

    Article  PubMed Central  PubMed  Google Scholar 

  20. Valdivieso AG, Santa-Coloma TA (2013) CFTR activity and mitochondrial function. Redox Biol 1:190–202

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jendrossek V, Grassme H, Mueller I, Lang F, Gulbins E (2001) Pseudomonas aeruginosa-induced apoptosis involves mitochondria and stress-activated protein kinases. Infect Immun 69:2675–2683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Jiang L, Liu Y, Ma MM, Tang YB, Zhou JG, Guan YY (2013) Mitochondria dependent pathway is involved in the protective effect of bestrophin-3 on hydrogen peroxide-induced apoptosis in basilar artery smooth muscle cells. Apoptosis 18:556–565

    Article  CAS  PubMed  Google Scholar 

  23. Li SY, Wang XG, Ma MM et al (2012) Ginsenoside-Rd potentiates apoptosis induced by hydrogen peroxide in basilar artery smooth muscle cells through the mitochondrial pathway. Apoptosis 17:113–120

    Article  CAS  PubMed  Google Scholar 

  24. Qian Y, Du YH, Tang YB et al (2011) ClC-3 chloride channel prevents apoptosis induced by hydrogen peroxide in basilar artery smooth muscle cells through mitochondria dependent pathway. Apoptosis 16:468–477

    Article  CAS  PubMed  Google Scholar 

  25. Wang M, Yang H, Zheng LY et al (2012) Downregulation of TMEM16A calcium-activated chloride channel contributes to cerebrovascular remodeling during hypertension by promoting basilar smooth muscle cell proliferation. Circulation 125:697–707

    Article  CAS  PubMed  Google Scholar 

  26. Liu YJ, Wang XG, Tang YB et al (2010) Simvastatin ameliorates rat cerebrovascular remodeling during hypertension via inhibition of volume-regulated chloride channel. Hypertension 56:445–452

    Article  CAS  PubMed  Google Scholar 

  27. Tang YB, Liu YJ, Zhou JG, Wang GL, Qiu QY, Guan YY (2008) Silence of ClC-3 chloride channel inhibits cell proliferation and the cell cycle via G/S phase arrest in rat basilar arterial smooth muscle cells. Cell Prolif 41:775–785

    Article  CAS  PubMed  Google Scholar 

  28. Wang GL, Wang XR, Lin MJ, He H, Lan XJ, Guan YY (2002) Deficiency in ClC-3 chloride channels prevents rat aortic smooth muscle cell proliferation. Circ Res 91:E28–E32

    Article  CAS  PubMed  Google Scholar 

  29. Guo JJ, Stoltz DA, Zhu V et al (2013) Genotype-specific alterations in vascular smooth muscle cell function in cystic fibrosis piglets. J Cyst Fibros 13:251–259

    Article  PubMed  Google Scholar 

  30. Meissner A, Yang J, Kroetsch JT et al (2012) Tumor necrosis factor-alpha-mediated downregulation of the cystic fibrosis transmembrane conductance regulator drives pathological sphingosine-1-phosphate signaling in a mouse model of heart failure. Circulation 125:2739–2750

    Article  CAS  PubMed  Google Scholar 

  31. l’Hoste S, Chargui A, Belfodil R et al (2010) CFTR mediates apoptotic volume decrease and cell death by controlling glutathione efflux and ROS production in cultured mice proximal tubules. Am J Physiol Renal Physiol 298:F435–F453

    PubMed  Google Scholar 

  32. Moriceau S, Lenoir G, Witko-Sarsat V (2010) In cystic fibrosis homozygotes and heterozygotes, neutrophil apoptosis is delayed and modulated by diamide or roscovitine: evidence for an innate neutrophil disturbance. J Innate Immun 2:260–266

    Article  CAS  PubMed  Google Scholar 

  33. Olivier AK, Yi Y, Sun X et al (2012) Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets. J Clin Invest 122:3755–3768

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Xiang SY, Ye LL, Duan LL et al (2011) Characterization of a critical role for CFTR chloride channels in cardioprotection against ischemia/reperfusion injury. Acta Pharmacol Sin 32:824–833

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Chaudhary N, Datta K, Askin FB, Staab JF, Marr KA (2012) Cystic fibrosis transmembrane conductance regulator regulates epithelial cell response to Aspergillus and resultant pulmonary inflammation. Am J Respir Crit Care Med 185:301–310

    CAS  PubMed  Google Scholar 

  36. L’Hoste S, Chargui A, Belfodil R et al (2009) CFTR mediates cadmium-induced apoptosis through modulation of ROS level in mouse proximal tubule cells. Free Radic Biol Med 46:1017–1031

    Article  PubMed  Google Scholar 

  37. Velsor LW, Kariya C, Kachadourian R, Day BJ (2006) Mitochondrial oxidative stress in the lungs of cystic fibrosis transmembrane conductance regulator protein mutant mice. Am J Respir Cell Mol Biol 35:579–586

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Chen J, Kinter M, Shank S, Cotton C, Kelley TJ, Ziady AG (2008) Dysfunction of Nrf-2 in CF epithelia leads to excess intracellular H2O2 and inflammatory cytokine production. PLoS One 3:e3367

    Article  PubMed Central  PubMed  Google Scholar 

  39. Rottner M, Tual-Chalot S, Mostefai HA, Andriantsitohaina R, Freyssinet JM, Martinez MC (2011) Increased oxidative stress induces apoptosis in human cystic fibrosis cells. PLoS One 6:e24880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Luoma JS, Stralin P, Marklund SL, Hiltunen TP, Sarkioja T, Yla-Herttuala S (1998) Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins. Arterioscler Thromb Vasc Biol 18:157–167

    Article  CAS  PubMed  Google Scholar 

  41. Shapiro BL (1989) Evidence for a mitochondrial lesion in cystic fibrosis. Life Sci 44:1327–1334

    Article  CAS  PubMed  Google Scholar 

  42. Shapiro BL (1988) Mitochondrial dysfunction, energy expenditure, and cystic fibrosis. Lancet 2:289

    Article  CAS  PubMed  Google Scholar 

  43. Valdivieso AG, Clauzure M, Marin MC et al (2012) The mitochondrial complex I activity is reduced in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function. PLoS One 7:e48059

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Chipperfield AR, Harper AA (2000) Chloride in smooth muscle. Prog Biophys Mol Biol 74:175–221

    Article  CAS  PubMed  Google Scholar 

  45. Bulley S, Jaggar JH (2013) Cl channels in smooth muscle cells. Pflugers Arch 466:873

    Article  Google Scholar 

  46. Duan D (2009) Phenomics of cardiac chloride channels: the systematic study of chloride channel function in the heart. J Physiol 587:2163–2177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Guan YY, Wang GL, Zhou JG (2006) The ClC-3 Cl- channel in cell volume regulation, proliferation and apoptosis in vascular smooth muscle cells. Trends Pharmacol Sci 27:290–296

    Article  CAS  PubMed  Google Scholar 

  48. Shi XL, Wang GL, Zhang Z et al (2007) Alteration of volume-regulated chloride movement in rat cerebrovascular smooth muscle cells during hypertension. Hypertension 49:1371–1377

    Article  CAS  PubMed  Google Scholar 

  49. Zheng LY, Li L, Ma MM et al (2013) Deficiency of volume-regulated ClC-3 chloride channel attenuates cerebrovascular remodelling in DOCA-salt hypertension. Cardiovasc Res 100:134–142

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (Key Grants Nos. 81230082, and 81370897, 81173055) and NSFC-CIHR, CHINA-CANADA Joint Health Research Initiative Proposal (No. 813111115).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guan-Lei Wang or Yong-Yuan Guan.

Additional information

Jia-Wei Zeng, Xue-Lin Zeng, Fei-Ya Li they equally contribute to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, JW., Zeng, XL., Li, FY. et al. Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) prevents apoptosis induced by hydrogen peroxide in basilar artery smooth muscle cells. Apoptosis 19, 1317–1329 (2014). https://doi.org/10.1007/s10495-014-1014-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-014-1014-z

Keywords

Navigation