Skip to main content
Log in

Lung injury after ischemia-reperfusion of small intestine in rats involves apoptosis of type II alveolar epithelial cells mediated by TNF-α and activation of Bid pathway

Apoptosis Aims and scope Submit manuscript

Abstract

Although ischemia-reperfusion (I/R) of small intestine is known to induce lung cell apoptosis, there is little information on intracellular and extracellular molecular mechanisms. Here, we investigated the mechanisms of apoptosis including the expression of Fas, Fas ligand (FasL), Bid, Bax, Bcl-2, cytochrome c, and activated caspase-3 in the rat lung at various time-points (0–24 h) of reperfusion after 1-h ischemia of small intestine. As assessed by TUNEL, the number of apoptotic epithelial cells, which were subsequently identified as type II alveolar epithelial cells by electron microscopy and immunohistochemical double-staining, increased at 3 h of reperfusion in the lung. However, intravenous injections of anti-TNF-α antibody decreased the number of TUNEL-positive cells, indicating involvement of tumor necrosis factor-α (TNF-α) in the induction of lung cell apoptosis. Western blotting and/or immunohistochemistry revealed a marked up-regulation of Fas, FasL, Bid, Bax, cytochrome c and activated caspase-3 and down-regulation of Bcl-2 in lung epithelial and stromal cells at 3 h of reperfusion. Our results indicate that I/R of small intestine results in apoptosis of rat alveolar type II cells through a series of events including systemic TNF-α, activation of two apoptotic signaling pathways and mitochondrial translocation of Bid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Köksoy C, Kuzu MA, Kuzu I, Ergun H, Gurhan I (2001) Role of tumour necrosis factor in lung injury caused by intestinal ischaemia-reperfusion. Br J Surg 88:464–468

    Article  PubMed  Google Scholar 

  2. Souza DG, Soares AC, Pinho V et al (2002) Increased mortality and inflammation in tumor necrosis factor-stimulated gene-14 transgenic mice after ischemia and reperfusion injury. Am J Pathol 160:1755–1765

    PubMed  CAS  Google Scholar 

  3. Harward TR, Brooks DL, Flynn TC, Seeger JM (1993) Multiple organ dysfunction after mesenteric artery revascularization. J Vasc Surg 18:459–469

    Article  PubMed  CAS  Google Scholar 

  4. Sorkine P, Szold O, Halpern P et al (1997) Gut decontamination reduces bowel ischemia-induced lung injury in rats. Chest 112:491–495

    PubMed  CAS  Google Scholar 

  5. Xiao F, Eppihimer MJ, Willis BH, Carden DL (1997) Complement-mediated lung injury and neutrophil retention after intestinal ischemia-reperfusion. J Appl Physiol 82:1459–1465

    PubMed  CAS  Google Scholar 

  6. Souza DG, Cara DC, Cassali GD et al (2000) Effects of the PAF receptor antagonist UK74505 on local and remote reperfusion injuries following ischaemia of the superior mesenteric artery in the rat. Br J Pharmacol 131:1800–1808

    Article  PubMed  CAS  Google Scholar 

  7. Souza DG, Vieira AT, Pinho V et al (2005) NF-κB plays a major role during the systemic and local acute inflammatory response following intestinal reperfusion injury. Br J Pharmacol 145:246–254

    Article  PubMed  CAS  Google Scholar 

  8. Börjesson A, Norlin A, Wang X, Andersson R, Folkesson HG (2000) TNF-α stimulates alveolar liquid clearance during intestinal ischemia-reperfusion in rats. Am J Physiol Lung Cell Mol Physiol 278:L3–L12

    PubMed  Google Scholar 

  9. Lane JS, Todd KE, Lewis MP et al (1997) Interleukin-10 reduces the systemic inflammatory response in a murine model of intestinal ischemia/reperfusion. Surgery 122:288–294

    Article  PubMed  CAS  Google Scholar 

  10. Pompermayer K, Amaral FA, Fagundes CT et al (2007) Effects of the treatment with glibenclamide, an ATP-sensitive potassium channel blocker, on intestinal ischemia and reperfusion injury. Eur J Pharmacol 556:215–222

    Article  PubMed  CAS  Google Scholar 

  11. Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65

    Article  PubMed  CAS  Google Scholar 

  12. Matute-Bello G, Liles WC, Steinberg KP et al (1999) Soluble Fas ligand induces epithelial cell apoptosis in humans with acute lung injury (ARDS). J Immunol 163:2217–2225

    PubMed  CAS  Google Scholar 

  13. An S, Hishikawa Y, Koji T (2005) Induction of cell death in rat small intestine by ischemia reperfusion: differential roles of Fas/Fas ligand and Bcl-2/Bax systems depending upon cell types. Histochem Cell Biol 123:249–261

    Article  PubMed  CAS  Google Scholar 

  14. Green DR (2000) Apoptotic pathways: paper wraps stone blunts scissors. Cell 102:1–4

    Article  PubMed  CAS  Google Scholar 

  15. Ding WX, Yin XM (2004) Dissection of the multiple mechanisms of TNF-alpha-induced apoptosis in liver injury. J Cell Mol Med 8:445–454

    Article  PubMed  CAS  Google Scholar 

  16. Pan G, O’Rourke K, Chinnaiyan AM et al (1997) The receptor for the cytotoxic ligand TRAIL. Science 276:111–113

    Article  PubMed  CAS  Google Scholar 

  17. Walczak H, Degli-Esposti MA, Johnson RS et al (1997) TRAIL-R2: a novel apoptosis-mediating receptor for TRAIL. EMBO J 16:5386–5397

    Article  PubMed  CAS  Google Scholar 

  18. Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM (1995) FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 81:505–512

    Article  PubMed  CAS  Google Scholar 

  19. Hsu H, Xiong J, Goeddel DV (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81:495–504

    Article  PubMed  CAS  Google Scholar 

  20. Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501

    Article  PubMed  CAS  Google Scholar 

  21. Gross A, Yin XM, Wang K et al (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274:1156–1163

    Article  PubMed  CAS  Google Scholar 

  22. Baud V, Karin M (2001) Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol 11:372–377

    Article  PubMed  CAS  Google Scholar 

  23. Naidu BV, Woolley SM, Farivar AS et al (2004) Early tumor necrosis factor-alpha release from the pulmonary macrophage in lung ischemia-reperfusion injury. J Thorac Cardiovasc Surg 127:1502–1508

    Article  PubMed  CAS  Google Scholar 

  24. Hakuno N, Koji T, Yano T et al (1996) Fas/APO-1/CD95 system as a mediator of granulosa cell apoptosis in ovarian follicle atresia. Endocrinology 137:1938–1948

    Article  PubMed  CAS  Google Scholar 

  25. Koji T, Hishikawa Y, Ando H, Nakanishi Y, Kobayashi N (2001) Expression of Fas and Fas ligand in normal and ischemia-reperfusion testes: involvement of the Fas system in the induction of germ cell apoptosis in the damaged mouse testis. Biol Reprod 64:946–954

    Article  PubMed  CAS  Google Scholar 

  26. Watanabe-Fukunaga R, Brannan CI, Itoh N et al (1992) The cDNA structure, expression, and chromosomal assignment of the mouse Fas antigen. J Immunol 148:1274–1279

    PubMed  CAS  Google Scholar 

  27. Koji T, Kobayashi N, Nakanishi Y et al (1994) Immunohistochemical localization of Fas antigen in paraffin sections with rabbit antibodies against human synthetic Fas peptides. Acta Histochem Cytochem 27:459–463

    CAS  Google Scholar 

  28. Suda T, Takahashi T, Golstein P, Nagata S (1993) Molecular cloning and expression of the Fas ligand, a novel member of the tumor necrosis factor family. Cell 75:1169–1178

    Article  PubMed  CAS  Google Scholar 

  29. Megison SM, Horton JW, Chao H, Walker PB (1990) A new model for intestinal ischemia in the rat. J Surg Res 49:168–173

    Article  PubMed  CAS  Google Scholar 

  30. Ben-Ari Z, Hochhauser E, Burstein I et al (2002) Role of anti-tumor necrosis factor-alpha in ischemia/reperfusion injury in isolated rat liver in a blood-free environment. Transplantation 73:1875–1880

    Article  PubMed  CAS  Google Scholar 

  31. Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501

    Article  PubMed  CAS  Google Scholar 

  32. Adams JC (1981) Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem 29:775

    PubMed  CAS  Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  34. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  35. Bardales RH, Xie SS, Schaefer RF, Hsu SM (1996) Apoptosis is a major pathway responsible for the resolution of type II pneumocytes in acute lung injury. Am J Pathol 149:845–852

    PubMed  CAS  Google Scholar 

  36. Collange O, Fabienne T, Nathalie R et al (2005) Pulmonary apoptosis after supraceliac aorta clamping in a rat model. J Surg Res 129:190–195

    Article  PubMed  CAS  Google Scholar 

  37. Polunovsky VA, Chen B, Henke C et al (1993) Role of mesenchymal cell death in lung remodeling after injury. J Clin Invest 92:388–397

    Article  PubMed  CAS  Google Scholar 

  38. Buckley S, Barsky L, Driscoll B, Weinberg K, Anderson KD, Warburton D (1998) Apoptosis and DNA damage in type 2 alveolar epithelial cells cultured from hyperoxic rats. Am J Physiol 274:L714–L720

    PubMed  CAS  Google Scholar 

  39. Fehrenbach H, Kasper M, Koslowski R et al (2000) Alveolar epithelial type II cell apoptosis in vivo during resolution of keratinocyte growth factor-induced hyperplasia in the rat. Histochem Cell Biol 114:49–61

    PubMed  CAS  Google Scholar 

  40. Gupta S, Gollapudi S (2005) Molecular mechanisms of TNF-alpha-induced apoptosis in aging human T cell subsets. Int J Biochem Cell Biol 37:1034–1042

    Article  PubMed  CAS  Google Scholar 

  41. MacEwan DJ (2002) TNF receptor subtype signalling: differences and cellular consequences. Cell Signal 14:477–492

    Article  PubMed  CAS  Google Scholar 

  42. Guthmann F, Wissel H, Schachtrup C et al (2005) Inhibition of TNFalpha in vivo prevents hyperoxia-mediated activation of caspase 3 in type II cells. Respir Res 6:1–16

    Article  CAS  Google Scholar 

  43. Cavriani G, Oliveira-Filho RM, Trezena AG et al (2004) Lung microvascular permeability and neutrophil recruitment are differently regulated by nitric oxide in a rat model of intestinal ischemia-reperfusion. Eur J Pharmacol 494:241–249

    Article  PubMed  CAS  Google Scholar 

  44. Wyble CW, Desai TR, Clark ET, Hynes KL, Gewertz BL (1996) Physiologic concentrations of TNFalpha and IL-1beta released from reperfused human intestine upregulate E-selectin and ICAM-1. J Surg Res 63:333–338

    Article  PubMed  CAS  Google Scholar 

  45. Hiroyasu S, Shiraishi M, Koji T et al (1999) Analysis of Fas system in pulmonary injury of graft-versus-host disease after rat intestinal transplantation. Transplantation 68:933–938

    Article  PubMed  CAS  Google Scholar 

  46. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490

    Article  PubMed  CAS  Google Scholar 

  47. Perez D, White E (2000) TNF-alpha signals apoptosis through a Bid-dependent conformational change in Bax that is inhibited by E1B 19 K. Mol Cell 6:53–63

    Article  PubMed  CAS  Google Scholar 

  48. Desagher S, Osen-Sand A, Nichols A et al (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Bio 144:891–901

    Article  CAS  Google Scholar 

  49. Clohessy JG, Zhuang J, de Boer J, Gil-Gomez G, Brady HJ (2006) Mcl-1 interacts with truncated Bid and inhibits its induction of cytochrome c release and its role in receptor-mediated apoptosis. J Biol Chem 281:5750–5759

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (nos. 16406005, 18390060 to T. Koji). We thank Mr. Takashi Suematsu for this excellent EM techniques assistance and Dr. Yorihisa Sumida, Dr. Shuichi Tobinaga, and Prof. Takeshi Nagayasu (Division of Surgical Oncology, Department of Translational Medical Sciences) for excellent technical support of assessment of arterial blood gas exchange in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko Koji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, S., Hishikawa, Y., Liu, J. et al. Lung injury after ischemia-reperfusion of small intestine in rats involves apoptosis of type II alveolar epithelial cells mediated by TNF-α and activation of Bid pathway. Apoptosis 12, 1989–2001 (2007). https://doi.org/10.1007/s10495-007-0125-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0125-1

Keywords

Navigation