Skip to main content
Log in

Inhibition of apoptotic potency by ligand stimulated thyroid hormone receptors located in mitochondria

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

We recently reported that shortened thyroid hormone receptor isoforms (TRs) can target mitochondria and acutely modulate inositol 1,4,5 trisphosphate (IP3)-mediated Ca2+ signaling when activated by thyroid hormone 3,5,3′-tri-iodothyronine (T3). Stimulation occurs via an increase in mitochondrial metabolism that is independent of transcriptional activity. Here, we present evidence that T3-bound xTRβA1s inhibit apoptotic activity mediated by cytochrome c release. An assay for apoptotic potency was modified to measure the ability of Xenopus oocyte extracts to induce morphological changes in isolated liver nuclei. Apoptotic potency was significantly decreased when oocyte extract was prepared from xTRβA1 expressing oocytes and treated with T3. The ability of T3 treatment to inhibit apoptosis was dependent on the expression of xTRβA1s in the mitochondrial fraction, not in the cytosolic fraction. T3 treatment also increased the membrane potential of isolated mitochondria prepared from oocytes expressing xTRβA1s but not from wildtype controls. We conclude that T3 acutely regulates cytochrome c release in a potential dependent manner by activating TRs located within mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Ca2+ :

Calcium

IP3 :

Inositol 1,4,5-trisphosphate

T3 :

3,5,3′-tri-iodothyronine

TRs:

Thyroid receptors

MBS:

Modified barth’s solution

ΔΨ:

Mitochondrial membrane potential

DEPC:

Diethyl pyrocarbonate

References

  1. Ichikawa K, Hashizume K (1995) Thyroid hormone action in the cell. Endocr J 42:131–140

    PubMed  CAS  Google Scholar 

  2. Nagai R, Zarain-Herzberg A, Brandl CJ, Fujii J, Tada M, MacLennan DH, Alpert NR, Periasamy M (1989) Regulation of myocardial Ca2+-ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 86:2966–2970

    Article  PubMed  CAS  Google Scholar 

  3. Oppenheimer JH, Schwartz HL, Mariash CN, Kinlaw WB, Wong NC, Freake HC (1987) Advances in our understanding of thyroid hormone action at the cellular level. Endocr Rev 8:288–308

    PubMed  CAS  Google Scholar 

  4. Abbaticchio G, Giorgino R, Gentile FM, Cassano A, Gattuccio F, Orlando G, Ianni A (1981) Hormones in the seminal fluid. The transport proteins of the thyroid hormones. Acta Eur Fertil 12:307–311

    PubMed  CAS  Google Scholar 

  5. Oppenheimer JH, Schwartz HL, Strait KA (1994) Thyroid hormone action 1994: the plot thickens. Eur J Endocrinol 130:15–24

    PubMed  CAS  Google Scholar 

  6. Kawahara A, Baker BS, Tata JR (1991) Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis. Development 112:933–943

    PubMed  CAS  Google Scholar 

  7. Soboll S (1993) Long-term and short-term changes in mitochondrial parameters by thyroid hormones. Biochem Soc Trans 21(Pt 3):799–803

    PubMed  CAS  Google Scholar 

  8. Iglesias T, Caubin J, Zaballos A, Bernal J, Munoz A (1995) Identification of the mitochondrial NADH dehydrogenase subunit 3 (ND3) as a thyroid hormone regulated gene by whole genome PCR analysis. Biochem Biophys Res Commun 210:995–1000

    Article  PubMed  CAS  Google Scholar 

  9. Wrutniak C, Cassar-Malek I, Marchal S, Rascle A, Heusser S, Keller JM, Flechon J, Dauca M, Samarut J, Ghysdael J et al (1995) A 43-kDa protein related to c-Erb A alpha 1 is located in the mitochondrial matrix of rat liver. J Biol Chem 270:16347–16354

    Article  PubMed  CAS  Google Scholar 

  10. Das AM, Harris DA (1991) Control of mitochondrial ATP synthase in rat cardiomyocytes: effects of thyroid hormone. Biochim Biophys Acta 1096:284–290

    PubMed  CAS  Google Scholar 

  11. Meehan J, Kennedy JM (1997) Influence of thyroid hormone on the tissue-specific expression of cytochrome c oxidase isoforms during cardiac development. Biochem J 327(Pt 1):155–160

    PubMed  CAS  Google Scholar 

  12. Schonfeld P, Wieckowski MR, Wojtczak L (1997) Thyroid hormone-induced expression of the ADP/ATP carrier and its effect on fatty acid-induced uncoupling of oxidative phosphorylation. FEBS Lett 416:19–22

    Article  PubMed  CAS  Google Scholar 

  13. Soboll S (1993) Thyroid hormone action on mitochondrial energy transfer. BBABIO 43862:1–16

    Google Scholar 

  14. Upadhyay G, Singh R, Kumar A, Kumar S, Kapoor A, Godbole MM (2004) Severe hyperthyroidism induces mitochondria-mediated apoptosis in rat liver. Hepatology 39:1120–1130

    Article  PubMed  Google Scholar 

  15. Singh R, Upadhyay G, Godbole MM (2003) Hypothyroidism alters mitochondrial morphology and induces release of apoptogenic proteins during rat cerebellar development. J Endocrinol 176:321–329

    Article  PubMed  CAS  Google Scholar 

  16. Xiao Q, Nikodem VM (1998) Apoptosis in the developing cerebellum of the thyroid hormone deficient rat. Front Biosci 3:A52–A57

    PubMed  CAS  Google Scholar 

  17. Ichikawa K, Hashizume K (1995) Thyroid hormone action in the cell. Endocr J 42:131–140

    PubMed  CAS  Google Scholar 

  18. Oppenheimer JH, Schwartz HL, Strait KA (1994) Thyroid hormone action 1994: the plot thickens. Eur J Endocrinol 130:15–24

    PubMed  CAS  Google Scholar 

  19. Lazar MA (1993) Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 14:184–193

    Article  PubMed  CAS  Google Scholar 

  20. Ardail D, Lerme F, Puymirat J, Morel G (1993) Evidence for the presence of α and β-related T3 receptors in rat liver mitochondria. Eur J Cell Biol 62:105–113

    PubMed  CAS  Google Scholar 

  21. Casas F, Rochard P, Rodier A, Cassar-Malek I, Marchal-Victorion S, Wiesner RJ, Cabello G, Wrutniak C (1999) A variant form of the nuclear triiodothyronine receptor c-ErbAalpha1 plays a direct role in regulation of mitochondrial RNA synthesis. Mol Cell Biol 19:7913–7924

    PubMed  CAS  Google Scholar 

  22. Shi YB, Sachs LM, Jones P, Li Q, Ishizuya-Oka A (1998) Thyroid hormone regulation of Xenopus laevis metamorphosis: functions of thyroid hormone receptors and roles of extracellular matrix remodeling. Wound Repair Regen 6:314–322

    Article  PubMed  CAS  Google Scholar 

  23. Sachs LM, Damjanovski S, Jones PL, Li Q, Amano T, Ueda S, Shi YB, Ishizuya-Oka A (2000) Dual functions of thyroid hormone receptors during Xenopus development. Comp Biochem Physiol B Biochem Mol Biol 126:199–211

    Article  PubMed  CAS  Google Scholar 

  24. Tata JR (1993) Gene expression during metamorphosis: an ideal model for post-embryonic development. Bioessays 15:239–248

    Article  PubMed  CAS  Google Scholar 

  25. Xu Q, Baker BS, Tata JR (1993) Developmental and hormonal regulation of the Xenopus liver-type arginase gene. Eur J Biochem 211:891–898

    Article  PubMed  CAS  Google Scholar 

  26. Yaoita Y, Nakajima K (1997) Induction of apoptosis and CPP32 expression by thyroid hormone in a myoblastic cell line derived from tadpole tail. J Biol Chem 272:5122–5127

    Article  PubMed  CAS  Google Scholar 

  27. Hara M, Suzuki S, Mori J, Yamashita K, Kumagai M, Sakuma T, Kakizawa T, Takeda T, Miyamoto T, Ichikawa K, Hashizume K (2000) Thyroid hormone regulation of apoptosis induced by retinoic acid in promyeloleukemic HL-60 cells: studies with retinoic acid receptor-specific and retinoid × receptor-specific ligands. Thyroid 10:1023–1034

    PubMed  CAS  Google Scholar 

  28. Kalderon B, Hermesh O, Bar-Tana J (1995) Mitochondrial permeability transition is induced by in vivo thyroid hormone treatment. Endocrinology 136:3552–3556

    Article  PubMed  CAS  Google Scholar 

  29. Sterling K, Brenner MA, Sakurada T (1980) Rapid effect of triiodothyronine on the mitochondrial pathway in rat liver in vivo. Science 210:340–342

    Article  PubMed  CAS  Google Scholar 

  30. Crespo-Armas A, Mowbray J (1987) The rapid alteration by tri-iodo-l-thyronine in vivo of both the ADP/O ratio and the apparent H+/O ratio in hypothyroid-rat liver mitochondria. Biochem J 241:657–661

    PubMed  CAS  Google Scholar 

  31. Saelim N, John LM, Wu J, Park JS, Bai Y, Camacho P, Lechleiter JD (2004) Nontranscriptional modulation of intracellular Ca2+ signaling by ligand stimulated thyroid hormone receptor. J Cell Biol 167:915–924

    Article  PubMed  CAS  Google Scholar 

  32. Beato M, Klug J (2000) Steroid hormone receptors: an update. Hum Reprod Update 6:225–236

    Article  PubMed  CAS  Google Scholar 

  33. von Ahsen O, Newmeyer DD (2000) Cell-free apoptosis in Xenopus laevis egg extracts. Methods Enzymol 322:183–198

    Google Scholar 

  34. Lin DT, Lechleiter JD (2002) Mitochondrial targeted cyclophilin D protects cells from cell death by peptidyl prolyl isomerization. J Biol Chem 277:31134–31141

    Article  PubMed  CAS  Google Scholar 

  35. Newmeyer DD, Farschon DM, Reed JC (1994) Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79:353–364

    Article  PubMed  CAS  Google Scholar 

  36. Camacho P, Lechleiter JD (2000) Xenopus oocytes as a tool in calcium signaling research. In: Putney J (ed) Methods in calcium signaling research. CRC Press LLC, chapter 6, pp. 157–181

  37. Smith LD, Xu WL, Varnold RL (1991) Oogenesis and oocyte isolation. Methods Cell Biol 36:45–60

    PubMed  CAS  Google Scholar 

  38. Heasman J, Holwill S, Wylie CC (1991) Fertilization of cultured Xenopus oocytes and use in studies of maternally inherited molecules. In: Kay BK, Peng HB (eds) Xenopus laevis: practical uses in cell and molecular biology, vol 36. Academic Press, Inc., San Diego, pp 213–230

    Google Scholar 

  39. Lehmann JM, Zhang XK, Graupner G, Lee MO, Hermann T, Hoffmann B, Pfahl M (1993) Formation of retinoid X receptor homodimers leads to repression of T3 response: hormonal cross talk by ligand-induced squelching. Mol Cell Biol 13:7698–7707

    PubMed  CAS  Google Scholar 

  40. von Ahsen O, Newmeyer DD (2000) Cell-free apoptosis in Xenopus laevis egg extracts. Methods Enzymol 322:183–198

    Article  PubMed  CAS  Google Scholar 

  41. Newmeyer DD, Farschon DM, Reed JC (1994) Cell-free apoptosis in Xenopus egg extracts: inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79:353–364

    Article  PubMed  CAS  Google Scholar 

  42. Nutt LK, Margolis SS, Jensen M, Herman CE, Dunphy WG, Rathmell JC, Kornbluth S (2005) Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell 123:89–103

    Article  PubMed  CAS  Google Scholar 

  43. Kawahara A, Baker BS, Tata JR (1991) Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis. Development 112:933–943

    PubMed  CAS  Google Scholar 

  44. Yaoita Y, Brown DD (1990) A correlation of thyroid hormone receptor gene expression with amphibian metamorphosis. Genes Dev 4:1917–1924

    Article  PubMed  CAS  Google Scholar 

  45. Sterling K (1991) Thyroid hormone action: identification of the mitochondrial thyroid hormone receptor as adenine nucleotide translocase. Thyroid 1:167–171

    Article  PubMed  CAS  Google Scholar 

  46. Sterling K, Brenner MA (1995) Thyroid hormone action: effect of triiodothyronine on mitochondrial adenine nucleotide translocase in vivo and in vitro. Metab: Clin Exp 44:193–199

    CAS  Google Scholar 

  47. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci USA 96:13807–13812

    Article  PubMed  CAS  Google Scholar 

  48. McCormack JG, Denton RM (1994) Signal transduction by intramitochondrial Ca2+ in mammalian energy metabolism. NIPS 9:71–76

    CAS  Google Scholar 

  49. McCormack JG, Halestrap AP, Denton PM (1990) Role of calcium ions regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425

    PubMed  CAS  Google Scholar 

  50. Arnold S, Goglia F, Kadenbach B (1998) 3,5-Diiodothyronine binds to subunit Va of cytochrome-c oxidase and abolishes the allosteric inhibition of respiration by ATP. Eur J Biochem 252:325–330

    Article  PubMed  CAS  Google Scholar 

  51. Lee I, Bender E, Kadenbach B (2002) Control of mitochondrial membrane potential and ROS formation by reversible phosphorylation of cytochrome c oxidase. Mol Cell Biochem 234–235:63–70

    Article  PubMed  Google Scholar 

  52. Jouaville LS, Ichas F, Holmuhamedov EL, Camacho P, Lechleiter JD (1995) Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377:438–441

    Article  PubMed  CAS  Google Scholar 

  53. Bender E, Kadenbach B (2000) The allosteric ATP-inhibition of cytochrome c oxidase activity is reversibly switched on by cAMP-dependent phosphorylation. FEBS Lett 466:130–134

    Article  PubMed  CAS  Google Scholar 

  54. Starkov AA (1997) “Mild” uncoupling of mitochondria. Biosci Rep 17:273–279

    Article  PubMed  CAS  Google Scholar 

  55. Nagasawa T, Suzuki S, Takeda T, DeGroot LJ (1997) Thyroid hormone receptor beta 1 expression in developing mouse limbs and face. Endocrinology 138:1276–1281

    Article  PubMed  CAS  Google Scholar 

  56. Yamano K, Miwa S (1998) Differential gene expression of thyroid hormone receptor alpha and beta in fish development. Gen Comp Endocrinol 109:75–85

    Article  PubMed  CAS  Google Scholar 

  57. Power DM, Llewellyn L, Faustino M, Nowell MA, Bjornsson BT, Einarsdottir IE, Canario AV, Sweeney GE (2001) Thyroid hormones in growth and development of fish. Comp Biochem Physiol C Toxicol Pharmacol 130:447–459

    Article  PubMed  CAS  Google Scholar 

  58. Nowell MA, Power DM, Canario AV, Llewellyn L, Sweeney GE (2001) Characterization of a sea bream (Sparus aurata) thyroid hormone receptor-beta clone expressed during embryonic and larval development. Gen Comp Endocrinol 123:80–89

    Article  PubMed  CAS  Google Scholar 

  59. Oofusa K, Tooi O, Kashiwagi A, Kashiwagi K, Kondo Y, Watanabe Y, Sawada T, Fujikawa K, Yoshizato K (2001) Expression of thyroid hormone receptor betaA gene assayed by transgenic Xenopus laevis carrying its promoter sequences. Mol Cell Endocrinol 181:97–110

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Erin Manitou and the Electron Microscopy Pathology Core and Victoria Centonze Frohlich and the Imaging Core Facility at UTHSCSA. Financial support: This work was supported by National Institutes of Health Grant R01 GM48451 and PO1 AG19316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Donald Lechleiter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saelim, N., Holstein, D., Chocron, E.S. et al. Inhibition of apoptotic potency by ligand stimulated thyroid hormone receptors located in mitochondria. Apoptosis 12, 1781–1794 (2007). https://doi.org/10.1007/s10495-007-0109-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-007-0109-1

Keywords

Navigation