Skip to main content
Log in

MG132 induced apoptosis is associated with p53-independent induction of pro-apoptotic Noxa and transcriptional activity of β-catenin

  • Reports
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Noxa is a pro-apoptotic BH3-only member of the Bcl-2 family of proteins that is up-regulated at a transcriptional level by the nuclear protein p53 in response to cellular stresses such as DNA damage or growth factor deprivation. Noxa is able to interact with anti-apoptotic members of the Bcl-2 family and causes release of cytochrome c into the cytosol, leading to the activation of caspases and induction of apoptosis. Here we demonstrate that MG132, a proteasomal inhibitor, rapidly induces Noxa mRNA and protein in two human cell lines, T/C28a and Saos2. The induction of Noxa is associated with a significant reduction in the number of metabolically active cells over the first 24 h of exposure to MG132 and progressive activation of caspase-3, a hallmark of caspase-dependent apoptosis. Partial rescue of the phenotype is observed when cells are transfected with Noxa siRNA prior to treatment with MG132, indicating functional significance of the induction of Noxa. p53 has previously been shown to be non-functional in the T/C28a cell line and is absent by Western blotting in Saos2 cells, suggesting that the induction of Noxa is through a p53 independent mechanism. Western blotting and confocal microscopy showed that total β-catenin protein is increased in both cell lines at the time of Noxa induction, with the bulk of the β-catenin present in the nucleus. Transfection with the Tcf reporter vector pTOPFLASH confirms that treatment with MG132 leads to early increased transcriptional activity of β-catenin in both T/C28a and Saos2 cells. However, although over-expression of transcriptionally active β-catenin in T/C28a cells also induced apoptosis through a p53-independent mechanism, the levels of Noxa protein were unchanged, suggesting that β-catenin mediated signaling and Noxa may play independent roles in MG132 induced apoptosis. In summary, our results demonstrate that MG132 induces the pro-apoptotic protein Noxa via a p53-independent mechanism that leads to caspase-dependent apoptosis. This is the first report showing that treatment with MG132 induces Noxa. This study also provides further evidence for a link between β-catenin mediated signaling and the induction of apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

MG132:

Z-Leu-Leu-Leu-al

GSI:

γ-secretase tripeptide

GSK-3β:

glycogen synthase akinase 3β

Tcf:

T-cell factor; DAPI, 4′,6-diamidino-2-phenylindole dihydrochloride

siRNA:

small interfering RNA

PBS:

phosphate-buffered saline

HIF-1α:

hypoxia-inducible factor 1α

References

  1. Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999; 13(15): 1899–1911.

    PubMed  CAS  Google Scholar 

  2. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94(4): 481–490.

    Article  PubMed  CAS  Google Scholar 

  3. Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC. Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 1998; 95(9): 4997–5002.

    Article  PubMed  CAS  Google Scholar 

  4. Takasawa R, Tanuma S. Sustained release of Smac/DIABLO from mitochondria commits to undergo UVB-induced apoptosis. Apoptosis 2003; 8(3): 291–299.

    Article  PubMed  CAS  Google Scholar 

  5. Heiser D, Labi V, Erlacher M, Villunger A. The Bcl-2 protein family and its role in the development of neoplastic disease. Exp Gerontol 2004; 39(8): 1125–1135.

    Article  PubMed  CAS  Google Scholar 

  6. Cheng EH, Wei MC, Weiler S et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 2001; 8(3): 705–711.

    Article  PubMed  CAS  Google Scholar 

  7. Oda E, Ohki R, Murasawa H et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000; 288(5468): 1053–1058.

    Article  PubMed  CAS  Google Scholar 

  8. Seo YW, Shin JN, Ko KH et al. The molecular mechanism of Noxa-induced mitochondrial dysfunction in p53-mediated cell death. J Biol Chem 2003; 278(48): 48292–48299.

    Article  PubMed  CAS  Google Scholar 

  9. Schuler M, Maurer U, Goldstein JC et al. p53 triggers apoptosis in oncogene-expressing fibroblasts by the induction of Noxa and mitochondrial Bax translocation. Cell Death Differ 2003; 10(4): 451–460.

    Article  PubMed  CAS  Google Scholar 

  10. Shibue T, Takeda K, Oda E et al. Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 2003; 17(18): 2233–2238.

    Article  PubMed  CAS  Google Scholar 

  11. Yakovlev AG, Di Giovanni S, Wang G, Liu W, Stoica B, Faden AI. BOK and NOXA are essential mediators of p53-dependent apoptosis. J Biol Chem 2004; 279(27): 28367–28374.

    Article  PubMed  CAS  Google Scholar 

  12. Qin JZ, Stennett L, Bacon P et al. p53-independent NOXA induction overcomes apoptotic resistance of malignant melanomas. Mol Cancer Ther 2004; 3(8): 895–902.

    PubMed  CAS  Google Scholar 

  13. Hershko T, Ginsberg D. Up-regulation of Bcl-2 homology 3 (BH3)-only proteins by E2F1 mediates apoptosis. J Biol Chem 2004; 279(10): 8627–8634.

    Article  PubMed  CAS  Google Scholar 

  14. Kim JY, Ahn HJ, Ryu JH, Suk K, Park JH. BH3-only protein Noxa is a mediator of hypoxic cell death induced by hypoxia-inducible factor 1alpha. J Exp Med 2004; 199(1): 113–124.

    Article  PubMed  CAS  Google Scholar 

  15. Giuliano M, Lauricella M, Calvaruso G et al. The apoptotic effects and synergistic interaction of sodium butyrate and MG132 in human retinoblastoma Y79 cells. Cancer Res 1999; 59(21): 5586–5595.

    PubMed  CAS  Google Scholar 

  16. MacLaren AP, Chapman RS, Wyllie AH, Watson CJ. p53-dependent apoptosis induced by proteasome inhibition in mammary epithelial cells. Cell Death Differ 2001; 8(3): 210–218.

    Article  PubMed  CAS  Google Scholar 

  17. Emanuele S, Calvaruso G, Lauricella M et al. Apoptosis induced in hepatoblastoma HepG2 cells by the proteasome inhibitor MG132 is associated with hydrogen peroxide production, expression of Bcl-XS and activation of caspase-3. Int J Oncol 2002; 21(4): 857–865.

    PubMed  CAS  Google Scholar 

  18. Nakaso K, Yoshimoto Y, Yano H, Takeshima T, Nakashima K. p53-mediated mitochondrial dysfunction by proteasome inhibition in dopaminergic SH-SY5Y cells. Neurosci Lett 2004; 354(3): 213–216.

    Article  PubMed  CAS  Google Scholar 

  19. Cervello M, Giannitrapani L, La Rosa M et al. Induction of apoptosis by the proteasome inhibitor MG132 in human HCC cells: Possible correlation with specific caspase-dependent cleavage of beta-catenin and inhibition of beta-catenin-mediated transactivation. Int J Mol Med 2004; 13(5): 741–748.

    PubMed  CAS  Google Scholar 

  20. Lauricella M, D’Anneo A, Giuliano M et al. Induction of apoptosis in human osteosarcoma Saos-2 cells by the proteasome inhibitor MG132 and the protective effect of pRb. Cell Death Differ 2003; 10(8): 930–932.

    Article  PubMed  CAS  Google Scholar 

  21. Kim K, Pang KM, Evans M, Hay ED. Overexpression of beta-catenin induces apoptosis independent of its transactivation function with LEF-1 or the involvement of major G1 cell cycle regulators. Mol Biol Cell 2000; 11(10): 3509–3523.

    PubMed  CAS  Google Scholar 

  22. Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW. Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem 1997; 272(40): 24735–24738.

    Article  PubMed  CAS  Google Scholar 

  23. Fagotto F, Gluck U, Gumbiner BM. Nuclear localization signal-independent and importin/karyopherin-independent nuclear import of beta-catenin. Curr Biol 1998; 8(4): 181–190.

    Article  PubMed  CAS  Google Scholar 

  24. Henderson BR. Nuclear-cytoplasmic shuttling of APC regulates beta-catenin subcellular localization and turnover. Nat Cell Biol 2000; 2(9): 653–660.

    Article  PubMed  CAS  Google Scholar 

  25. Kuhl M, Wedlich D. Wnt signalling goes nuclear. Bioessays 1997; 19(2): 101–104.

    Article  PubMed  CAS  Google Scholar 

  26. Willert K, Nusse R. Beta-catenin: A key mediator of Wnt signaling. Curr Opin Genet Dev 1998; 8(1): 95–102.

    Article  PubMed  CAS  Google Scholar 

  27. Gustavson MD, Crawford HC, Fingleton B, Matrisian LM. Tcf binding sequence and position determines beta-catenin and Lef-1 responsiveness of MMP-7 promoters. Mol Carcinog 2004; 41(3): 125–139.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang WV, Jullig M, Connolly AR, Stott NS. Early gene response in lithium chloride induced apoptosis. Apoptosis 2005; 10(1): 75–90.

    Article  PubMed  CAS  Google Scholar 

  29. Wessel D, Flugge UI. A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 1984; 138(1): 141–143.

    Article  PubMed  CAS  Google Scholar 

  30. Finger F, Schorle C, Zien A, Gebhard P, Goldring MB, Aigner T. Molecular phenotyping of human chondrocyte cell lines T/C-28a2, T/C-28a4, and C-28/I2. Arthritis Rheum 2003; 48(12): 3395–3403.

    Article  PubMed  CAS  Google Scholar 

  31. Hwang SG, Lee HC, Trepel JB, Jeon BH. Anticancer-drug-induced apoptotic cell death in leukemia cells is associated with proteolysis of beta-catenin. Leuk Res 2002; 26(9): 863–871.

    Article  PubMed  CAS  Google Scholar 

  32. Tenev T, Marani M, McNeish I, Lemoine NR. Pro-caspase-3 overexpression sensitises ovarian cancer cells to proteasome inhibitors. Cell Death Differ 2001; 8(3): 256–264.

    Article  PubMed  CAS  Google Scholar 

  33. Chen L, Willis SN, Wei A et al. Differential targeting of pro-survival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell in press.

  34. Villunger A, Michalak EM, Coultas L et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003; 302(5647): 1036–1038.

    Article  PubMed  CAS  Google Scholar 

  35. Mao CD, Hoang P, DiCorleto PE. Lithium inhibits cell cycle progression and induces stabilization of p53 in bovine aortic endothelial cells. J Biol Chem 2001; 276(28): 26180–26188.

    Article  PubMed  CAS  Google Scholar 

  36. Masuda H, Miller C, Koeffler HP, Battifora H, Cline MJ. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci USA 1987; 84(21): 7716–7719.

    Article  PubMed  CAS  Google Scholar 

  37. Chen PL, Chen YM, Bookstein R, Lee WH. Genetic mechanisms of tumor suppression by the human p53 gene. Science 1990; 250(4987): 1576–1580.

    PubMed  CAS  Google Scholar 

  38. D’Mello SR, Anelli R, Calissano P. Lithium induces apoptosis in immature cerebellar granule cells but promotes survival of mature neurons. Exp Cell Res 1994; 211(2): 332–338.

    Article  PubMed  CAS  Google Scholar 

  39. Madiehe AM, Mampuru LJ, Tyobeka EM. Induction of apoptosis in HL-60 cells by lithium. Biochem Biophys Res Commun 1995; 209(2): 768–774.

    Article  PubMed  CAS  Google Scholar 

  40. van Gijn ME, Snel F, Cleutjens JP, Smits JF, Blankesteijn WM. Overexpression of components of the Frizzled-Dishevelled cascade results in apoptotic cell death, mediated by beta-catenin. Exp Cell Res 2001; 265(1): 46–53.

    Article  PubMed  CAS  Google Scholar 

  41. Tang HR, He Q. Effects of lithium chloride on the proliferation and apoptosis of K562 leukemia cells. Hunan Yi Ke Da Xue Xue Bao 2003; 28(4): 357–360.

    PubMed  CAS  Google Scholar 

  42. Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. beta-catenin is a target for the ubiquitin-proteasome pathway. Embo J 1997; 16(13): 3797–3804.

    Article  PubMed  CAS  Google Scholar 

  43. Fukuda K. Apoptosis-associated cleavage of beta-catenin in human colon cancer and rat hepatoma cells. Int J Biochem Cell Biol 1999; 31(3/4): 519–529.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. S. Stott.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jüllig, M., Zhang, W.V., Ferreira, A. et al. MG132 induced apoptosis is associated with p53-independent induction of pro-apoptotic Noxa and transcriptional activity of β-catenin. Apoptosis 11, 627–641 (2006). https://doi.org/10.1007/s10495-006-4990-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-4990-9

Keywords

Navigation