Skip to main content
Log in

An Improved NO Prediction Model for Large Eddy Simulation of Turbulent Combustion

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Accurate prediction of nitrogen oxides (NOX) emissions is of great importance in combustion simulations. This work proposes an improved model to predict NO distributions in turbulent flames, based on the large eddy simulation approach and flamelet-progress-variable turbulence combustion model. A separate table for NO reaction rate is constructed to account for both unsteady and nonadiabatic effects on NO production. Different from the existing models, the nonadiabatic effect is considered by specifying different enthalpy defects by a scaling factor in the flamelet calculations. Additionally, it is observed that the transient variation of NO reaction rate with NO concentration exhibits two linear stages. As a result, only three flamelet databases are included to describe the NO reaction rate in a transient process, thereby simplifying the flamelet table while maintaining model accuracy. The proposed NO prediction model is validated in large eddy simulations of turbulent combustion, including the classic Sandia D and the Sydney swirling SM1 flames. The calculated NO variations show good agreement with experimental data, demonstrating the applicability and accuracy of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Availability of Data and Material

Supplementary material enclosed.

Code Availability

Not applicable.

Abbreviations

a i :

Planck mean absorption coefficient of species i

C :

Progress variable

C p :

Constant-pressure specific heat

D :

Molecular diffusivity

D b :

Diameter of bluff body

D t :

Turbulent diffusivity

H :

Total enthalpy

h i :

Enthalpy of species i

m i :

Chemical production rate of species i

P :

Pressure

P i :

Partial pressure of species i

Pr t :

Turbulent Prandtl number

Sc t :

Turbulent Schmidt number

t :

Time

T :

Temperature

T :

Background temperature

u i :

Velocity in i direction

x i :

Coordinate in i direction

Y i :

Mass fraction of species i

Z :

Mixture fraction

α :

Thermal diffusivity

α t :

Turbulent thermal diffusivity

β :

Scaling factor of radiative source term

λ :

Thermal conductivity

μ t :

Turbulent viscosity

ρ :

Density

σ :

Stefan–Boltzman constant

τ ij :

Stress tensor

χ :

Scalar dissipation rate

ω c :

Chemical production rate of progress variable

ω NO :

Chemical production rate of NO

–:

Filtering operation

∼:

Favre-filtering operation

References

  • Al-Abdeli, Y.M., Masri, A.R.: Stability characteristics and flowfields of turbulent non-premixed swirling flames. Combust. Theory Model. 7(4), 731–766 (2003)

    Article  Google Scholar 

  • Barlow, R., Frank, J.: Effects of turbulence on species mass fractions in methane/air jet flames. Symp. (Int.) Combust. 27, 1087–1095 (1998)

    Article  Google Scholar 

  • Barlow, R.: International workshop on measurement and computation of turbulent nonpremixed flames (TNF). https://www.sandia.gov/TNF/3rdWorkshop/TNF3.html (1998)

  • Barlow, R., Karpetis, A., Frank, J., Chen, J.-Y.: Scalar profiles and NO formation in laminar opposed-flow partially premixed methane/air flames. Combust. Flame 127(3), 2102–2118 (2001)

    Article  Google Scholar 

  • Bowman, C., Hanson, R., Davidson, D., Gardiner, W., Lissianski, V., Smith, G., Golden, D., Frenklach, M., Goldenberg, M.: GRI-Mech 2.11. http://www.me.berkeley.edu/gri_mech/ (1995)

  • Coelho, P.J., Peters, N.: Unsteady modelling of a piloted methane/air jet flame based on the Eulerian particle flamelet model. Combust. Flame 124(3), 444–465 (2001)

    Article  Google Scholar 

  • Correa, S.M.: A review of NOx formation under gas-turbine combustion conditions. Combust. Sci. Technol. 87(1–6), 329–362 (1993)

    Article  Google Scholar 

  • Dagaut, P., El Bakali, A., Ristori, A.: The combustion of kerosene: experimental results and kinetic modelling using 1-to 3-component surrogate model fuels. Fuel 85(7–8), 944–956 (2006)

    Article  Google Scholar 

  • Dorigon, L.J., Duciak, G., Brittes, R., Cassol, F., Galarca, M., França, F.H.: WSGG correlations based on HITEMP2010 for computation of thermal radiation in non-isothermal, non-homogeneous H2O/CO2 mixtures. Int. J. Heat Mass Transf. 64, 863–873 (2013)

    Article  Google Scholar 

  • Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A 3(7), 1760–1765 (1991)

    Article  Google Scholar 

  • Hossain, M., Jones, J.C., Malalasekera, W.: Modelling of a bluff-Body nonpremixed flame using a coupled radiation/flamelet combustion model. Flow Turbul. Combust. 67(3), 217–234 (2001)

    Article  Google Scholar 

  • Huang, D., Wang, Q., Meng, H.: Modeling of supercritical-pressure turbulent combustion of hydrocarbon fuels using a modified flamelet-progress-variable approach. Appl. Therm. Eng. 119, 472–480 (2017)

    Article  Google Scholar 

  • Ihme, M., Pitsch, H.: Modeling of radiation and nitric oxide formation in turbulent nonpremixed flames using a flamelet/progress variable formulation. Phys. Fluids 20(5), 055110 (2008)

    Article  Google Scholar 

  • Kemenov, K.A., Pope, S.B.: Molecular diffusion effects in LES of a piloted methane-air flame. Combust. Flame 158(2), 240–254 (2011)

    Article  Google Scholar 

  • Lee, K.W., Choi, D.H.: Analysis of NO formation in high temperature diluted air combustion in a coaxial jet flame using an unsteady flamelet model. Int. J. Heat Mass Transf. 52(5–6), 1412–1420 (2009)

    Article  Google Scholar 

  • Li, G., Modest, M.F.: Importance of turbulence-radiation interactions in turbulent diffusion jet flames. J. Heat Transf. 125(5), 831–838 (2003)

    Article  Google Scholar 

  • Lilly, D.K.: A proposed modifcation of the Germano subgrid-scale closure method. Phys. Fluids A 4(3), 633–635 (1992)

    Article  MathSciNet  Google Scholar 

  • Locci, C., Colin, O., Poitou, D., Mauss, F.: A tabulated, flamelet based no model for large eddy simulations of non premixed turbulent jets with enthalpy loss. Flow Turbul. Combust. 94(4), 691–729 (2015)

    Article  Google Scholar 

  • Masri, A.R., Kalt, P.A.M., Barlow, R.S.: The compositional structure of swirl-stabilised turbulent nonpremixed flames. Combust. Flame 137(1–2), 1–37 (2004)

    Article  Google Scholar 

  • Modest, M.F.: Radiative Heat Transfer. Academic press, New York (2013)

    Book  Google Scholar 

  • Nafe, J., Maas, U.: Modeling of NO formation based on ILDM reduced chemistry. Proc. Combust. Inst. 29(1), 1379–1385 (2002)

    Article  Google Scholar 

  • Odedra, A., Malalasekera, W.: Eulerian particle flamelet modeling of a bluff-body CH4/H2 flame. Combust. Flame 151(3), 512–531 (2007)

    Article  Google Scholar 

  • Olbricht, C., Ketelheun, A., Hahn, F., Janicka, J.: Assessing the predictive capabilities of combustion les as applied to the Sydney flame series. Flow Turbul. Combust. 85(3–4), 513–547 (2010)

    Article  Google Scholar 

  • Peters, N.: Laminar diffusion flamelet models in non-premixed turbulent combustion. Prog. Energy Combust. Sci. 10(3), 319–339 (1984)

    Article  Google Scholar 

  • Pierce, C.D., Moin, P.: Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)

    Article  MathSciNet  Google Scholar 

  • Pitsch, H.: Improved pollutant predictions in large-eddy simulations of turbulent non-premixed combustion by considering scalar dissipation rate fluctuations. Proc. Combust. Inst. 29(2), 1971–1978 (2002)

    Article  MathSciNet  Google Scholar 

  • Pitsch, H., Steiner, H.: Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 12(10), 2541–2554 (2000)

    Article  Google Scholar 

  • Proch, F., Kempf, A.M.: Modeling heat loss effects in the large eddy simulation of a model gas turbine combustor with premixed flamelet generated manifolds. Proc. Combust. Inst. 35(3), 3337–3345 (2015)

    Article  Google Scholar 

  • Ravikanti, S.M., Malalasekera, W., Hossain, M., Mahmud, T.: Flamelet based NOx-radiation integrated modelling of turbulent non-premixed flame using Reynolds-stress closure. Flow Turbul. Combust. 81(1–2), 301–319 (2008)

    Article  Google Scholar 

  • Turns, S.R.: An Introduction to Combustion, Concepts and Applications. McGraw-Hill, New York (1996)

    Google Scholar 

  • Vervisch, P.E., Colin, O., Michel, J.-B., Darabiha, N.: NO relaxation approach (NORA) to predict thermal NO in combustion chambers. Combust. Flame 158(8), 1480–1490 (2011)

    Article  Google Scholar 

  • Vreman, A.W., Albrecht, B.A., van Oijen, J.A., de Goey, L.P.H., Bastiaans, R.J.M.: Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust. Flame 153(3), 394–416 (2008)

    Article  Google Scholar 

  • Wollny, P., Rogg, B., Kempf, A.: Modelling heat loss effects in high temperature oxy-fuel flames with an efficient and robust non-premixed flamelet approach. Fuel 216, 44–52 (2018)

    Article  Google Scholar 

  • Zoller, B.T., Allegrini, J.M., Maas, U., Jenny, P.: PDF model for NO calculations with radiation and consistent NO-NO2 chemistry in non-premixed turbulent flames. Combust. Flame 158(8), 1591–1601 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Science and Technology Major Project (2017-III-0005-0030).

Funding

National Science and Technology Major Project (2017-III-0005-0030).

Author information

Authors and Affiliations

Authors

Contributions

J. Xu conducted a majority part of this work and wrote the first draft of the manuscript; D. Huang and R. Chen helped with coding and numerical data analyses; Professor H. Meng proposed the research topic, guided the research process, and finalized the manuscript.

Corresponding author

Correspondence to Hua Meng.

Ethics declarations

Conflict of interest

Not applicable.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

File 1

Calculated data of transient NO evolution process in CH4-air laminar flames (XLSX 140 kb)

File 2

Calculated data of Sandia D flame (XLSX 118 kb)

File 3

Calculated data of SM1 flame (XLSX 104 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Huang, D., Chen, R. et al. An Improved NO Prediction Model for Large Eddy Simulation of Turbulent Combustion. Flow Turbulence Combust 106, 881–899 (2021). https://doi.org/10.1007/s10494-020-00204-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00204-3

Keywords

Navigation